天然源面波勘探台阵对比试验

李娜 何正勤 叶太兰 房慎冲

李娜, 何正勤, 叶太兰, 房慎冲. 2015: 天然源面波勘探台阵对比试验. 地震学报, 37(2): 323-334. doi: 10.11939/jass.2015.02.012
引用本文: 李娜, 何正勤, 叶太兰, 房慎冲. 2015: 天然源面波勘探台阵对比试验. 地震学报, 37(2): 323-334. doi: 10.11939/jass.2015.02.012
Li Na, He Zhengqin, Ye Tailann, Fang Shenchong. 2015: Test for comparison of array layout in natural source surface wave exploration. Acta Seismologica Sinica, 37(2): 323-334. doi: 10.11939/jass.2015.02.012
Citation: Li Na, He Zhengqin, Ye Tailann, Fang Shenchong. 2015: Test for comparison of array layout in natural source surface wave exploration. Acta Seismologica Sinica, 37(2): 323-334. doi: 10.11939/jass.2015.02.012

天然源面波勘探台阵对比试验

doi: 10.11939/jass.2015.02.012
基金项目: 中国地震局地震行业科研专项(201308011)资助.
详细信息
    通讯作者:

    何正勤, E-mail: hezq@cea-igp.ac.cn

  • 中图分类号: P315.3+1

Test for comparison of array layout in natural source surface wave exploration

  • 摘要: 为了对比天然源面波勘探不同台阵布局的探测效果, 筛选出探测成果可靠、 效率高和便于野外施工的天然源面波勘探台阵阵形, 在天水市黄土覆盖区的同一场地分别用4种常见的阵形进行数据采集试验, 并对各种阵形数据使用空间自相关法或扩展空间自相关法提取相应的频散曲线, 通过反演得到了试验点地下的浅层速度结构模型. 分析对比试验结果表明: 4种台阵提取的频散曲线数值很相近; 频散谱能量集中度较高的是嵌套式等边三角形和圆形台阵, L形和直线形台阵相对分散; L形台阵低频段(4—8 Hz)比直线形台阵差, 其高频段(8—40 Hz)比直线形台阵好. 针对直线形台阵在高频段信噪比较低的情况, 在确保探测成果可靠性的前提下, 为了提高探测效率, 提出了在同一直线形台阵开展天然源与人工源面波联合勘探的数据采集方法. 实验结果证实, 这种联合勘探方法不仅可弥补直线形台阵高频段的不足, 确保探测精度和结果的可靠性, 而且还能实现“高低”频兼顾, 即“深浅”兼顾.

     

  • 图  1  微动台阵测点布局(a)嵌套式等边三角形台阵;(b)圆形台阵;(c)L形台阵;(d)直线形台阵

    Figure  1.  The layout of micro-tremor arrays(a)Nested equilateral triangles array;(b)Circle array;(c)L-shape array;(d)Linear array

    图  2  4种台阵的频散谱(a)嵌套式等边三角形台阵;(b)圆形台阵;(c)L形台阵;(d)直线形台阵

    Figure  2.  Dispersive spectra of four arrays(a)Nested equilateral triangles array;(b)Circle array;(c)L-shape array;(d)Linear array

    图  3  4种台阵的频散曲线

    Figure  3.  Dispersion curves for four arrays Red line st and s for nested equilateral trianglearray,blue line for circle array,purple line for L-shape array, and light blue linefor linear array

    图  4  天然源与人工源面波联合勘探的观测系统

    Figure  4.  Surface wave observation system of joint exploration with artificial and natural sources

    图  5  人工源(a)和天然源(b)的频散谱以及二者的线性叠加谱(c)

    Figure  5.  Dispersive spectra of artificial(a) and natural sources(b)as well as the linear superposition of both spectra(c)

    图  6  联合勘探反演的速度结构(a)频散曲线;(b)速度结构;(c)钻孔柱状图

    Figure  6.  The velocity structure obtained from inversion of joint exploration(a)Dispersion curve;(b)Velocity structure;(c)Borehole histogram

  • 李建军. 2008. 天然源面波勘探方法研究[D]. 桂林: 桂林工学院地球探测与信息技术系: 6-8.

    Li J J. 2008. Research on the Natural Source Surface Wave Exploration Method[D]. Guilin: Department of Earth Detecting and Information Technology, Guilin Institute of Technology: 6-8 (in Chinese).
    余凯, 毋光荣. 2012. 天然源面波勘探技术[C]//中国水利电力物探科技信息网2012年学术年会论文集. 北京: 中国水力发电工程学会: 352-355.

    Yu K, Wu G R. 2012. The natural source surface wave exploration technique[C]//Geophysical Prospecting of Hydraulic and Electric Engineering, Science and Technology Information Network of 2012 Academic Essays. Beijing: Hydropower Engineering Society of China: 352-355 (in Chinese).
    Ling S, Okada H. 1993. An extended use of the spatial autocorrelation method for the estimation of the geological structures using microtremors[C]//Proceedings of the 89th SEGJ Conference. Nagoya: Society of Exploration Geophysicists of Japan: 44-48.
  • 加载中
图(6)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  246
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-11
  • 修回日期:  2014-09-15
  • 刊出日期:  2015-03-01

目录

    /

    返回文章
    返回