2013年四川芦山MS7.0地震 强地面运动模拟

药晓东 章文波

药晓东, 章文波. 2015: 2013年四川芦山MS7.0地震 强地面运动模拟. 地震学报, 37(4): 599-616. doi: 10.11939/jass.2015.04.007
引用本文: 药晓东, 章文波. 2015: 2013年四川芦山MS7.0地震 强地面运动模拟. 地震学报, 37(4): 599-616. doi: 10.11939/jass.2015.04.007
Yao Xiaodong, Zhang Wenbo. 2015: Strong ground motion simulation for the 2013 MS7.0 Lushan, China, earthquake. Acta Seismologica Sinica, 37(4): 599-616. doi: 10.11939/jass.2015.04.007
Citation: Yao Xiaodong, Zhang Wenbo. 2015: Strong ground motion simulation for the 2013 MS7.0 Lushan, China, earthquake. Acta Seismologica Sinica, 37(4): 599-616. doi: 10.11939/jass.2015.04.007

2013年四川芦山MS7.0地震 强地面运动模拟

doi: 10.11939/jass.2015.04.007
基金项目: 

国家自然科学基金项目 41274068

中国科学院、 国家外国专家局创新团队国际合作伙伴计划 KZZD-EW-TZ-19

详细信息
    通讯作者:

    章文波, E-mail: wenbo@ucas.ac.cn

  • 中图分类号: P315.01

Strong ground motion simulation for the 2013 MS7.0 Lushan, China, earthquake

  • 摘要: 运用经验格林函数法模拟2013年4月20日芦山MS7.0地震的近场强地面运动. 在拟合过程中, 首先参考前人远场反演结果给出的滑动量分布特征和主震波形的包络线特征, 确定强震动生成区的大致范围和数量; 然后利用Somerville等提出的地震矩与凹凸体面积的经验关系式确定强震动生成区细小划分的初值, 继而利用遗传优化算法确定以上二者的最优值及其它震源参数. 将数值模拟波形与实际地震观测记录在时间域和频率域分别进行比较, 结果显示, 在所选取的30个观测台站中, 多数台站的数值模拟结果与实际观测结果符合得很好, 特别是大于1 Hz的高频部分. 断层面上有两个强震动生成区, 其位置与前人反演的滑动量集中分布区相一致, 而且强震动生成区规模比Somerville等获得的标度率估计值要小.

     

  • 图  1  经验格林函数法示意图

    (a)经验格林函数法主要参数;(b)校正函数F(t), 图中tr为上升时间

    Figure  1.  Schematic diagram of empirical Green’s function method

    (a) The parameters of empirical Green’s function method; (b) The correcting function F(t), where tr is rising time

    图  2  主震、 余震和台站空间分布图

    震源附近的矩形框是断层面在地表的投影

    Figure  2.  Locations of the main shock (asterisk) and the aftershock (dot) used as empirical Green’s function(EGF)

    The triangles indicate the locations of strong ground motion stations used for simulation by EGF. The rectangle near the hypocenter represents the surface projection of fault

    图  3  051BXD(a)和051CDZ(b)台站记录到的余震加速度时程(上)及其傅里叶谱与噪声谱(下)

    Figure  3.  Acceleration time histories (upper) of the aftershock recorded by the station 051BXD (a) and 051CDZ (b) as well as their Fourier spectra (dashed lines) and noise spectra (solid lines) (lower)

    图  4  芦山地震断层面上的滑动量分布

    (a) 王卫民等(2013)远震反演结果; (b) 张勇等(2013)远震反演结果; (c) 赵翠萍等(2013)远震反演结果; (d) 金明培等(2014) GPS与近场强震联合反演结果

    Figure  4.  Slip distributions on the fault for the Lushan earthquake

    Figs.(a)-(c) give the teleseismic inversion results from Wang et al (2013), Zhang et al (2013) and Zhao et al (2013), respectively; and Fig.(d) gives the joint inversion result of GPS and near filed strong motion from Jin et al (2014)

    图  5  051LSF台站记录的芦山主震加速度时程.

    图中数字为记录到的加速度峰值

    Figure  5.  Acceleration time histories of the Lushan main shock recorded by the station 051LSF

    The numbers are the recorded values of peak ground acceleration

    图  6  基于王卫民等(2013)的反演结果构建的强震动震源模型

    Figure  6.  Strong motion source model based on the inversion result from Wang et al (2013) The star indicates the hypocenter of the main shock. The black and red rectangles represent the SMGA1 and SMGA2, respectively

    图  7  强震动生成区面积(a)和上升时间(b)与地震矩的标度关系

    The gray solid lines indicate the empirical scaling relationship from Somerville et al (1999), the black solid lines represent 3 stage scaling relationships proposed by Irikura and Miyake (2011), and the star indicates the value obtained in this study

    Figure  7.  The empirical relationship between the strong motion generation area (a), the rising time (b) and seismic moment

    图  8  各台站加速度时程(a)和加速度傅里叶谱(b)的观测记录(黑色)与最优模型的拟合结果(灰色)对比(Ⅰ)

    The numbers in acceleration time histories indicate the values of peak ground acceleration

    Figure  8.  Comparison of acceleration time histories (a) and Fourier spectra (b) between the observed waveforms (black lines) and synthetic ones (gray lines) for the best model of different stations

    图  8  各台站加速度时程(a)和加速度傅里叶谱(b)的观测记录(黑色)与最优模型的拟合结果(灰色)对比(Ⅱ)

    The numbers in acceleration time histories indicate the values of peak ground acceleration

    Figure  8.  Comparison of acceleration time histories (a) and Fourier spectra (b) between the observed waveforms (black lines) and synthetic ones (gray lines) for the best model of different stations

    图  8  各台站加速度时程(a)和加速度傅里叶谱(b)的观测记录(黑色)与最优模型的拟合结果(灰色)对比(Ⅲ)

    The numbers in acceleration time histories indicate the values of peak ground acceleration

    Figure  8.  Comparison of acceleration time histories (a) and Fourier spectra (b) between the observed waveforms (black lines) and synthetic ones (gray lines) for the best model of different stations

    图  9  051QLY(a)和051YAM(b)台站记录到的余震加速度时程(上)及其傅里叶谱与噪声谱(下)

    Figure  9.  Acceleration time histories (upper) of the aftershock recorded by the stations 051QLY (a) and 051YAM (b) as well as their Fourier spectra (dashed lines) and noise spectra (solid lines) (lower)

    表  1  主震和作为经验格林函数的余震的震源位置和震源机制

    Table  1.   Focal mechanisms and locations of the main shock and the aftershock used as EGF in this study

    地震类型发震时间北纬/°东经/°深度/kmMW地震矩/(N·m)走向/°倾角/°滑动角/°
    年-月-日时:分
    主震2013-04-2000:0230.22103.1221.96.61.02×101921242100
    余震2013-04-2020:5330.28103.3130.34.82.15×10161774274
    注:引自哈佛大学全球质心矩张量目录.
    下载: 导出CSV

    表  2  强震动台站位置信息

    Table  2.   Locations of the 30 strong motion stations used in this study

    台站代码台站名称台站位置场地条件台站代码台站名称台站位置场地条件
    东经/°北纬/°东经/°北纬/°
    051BXD宝兴地办102.830.4基岩051LSF芦山飞仙102.930.0土层
    051BXM宝兴明礼102.730.4土层051MNA冕宁惠安102.228.6土层
    051BXY宝兴盐井102.930.5土层051MNC冕宁曹古102.228.6土层
    051BXZ宝兴民治102.930.5基岩051MNH冕宁回龙102.128.5土层
    051CDZ成都中和104.130.6基岩051MNJ冕宁地办102.228.5土层
    051DJZ都江紫平103.631.0土层051MNL冕宁泸沽102.228.3土层
    051HYQ汉源清溪102.629.6土层051MNT冕宁专业102.228.5土层
    051HYT洪雅科技103.429.9土层051MNW冕宁拖乌102.328.8土层
    051HYW汉源乌斯102.929.2土层051PJD蒲江大兴103.430.3土层
    051HYY汉源宜东102.429.6土层051QLY邛崃油榨103.330.4土层
    051KDT康定专业102.030.0土层051TQL天全两路102.429.9土层
    051LBH雷波黄琅103.828.4土层051XDM喜德冕山102.328.4土层
    051LDG泸定甘谷102.229.8土层051YAD雅安专业103.030.0土层
    051LDJ泸定加郡102.229.7土层051YAL荥经石龙102.829.9土层
    051LDL泸定冷碛102.229.8土层051YAM名山科技103.130.1土层
    注: 引自国家强震动台网中心.
    下载: 导出CSV

    表  3  最优模型参数和遗传算法搜索范围

    Table  3.   The optimal parameters of determined model and their search scopes for genetic algorithm

    搜索参数强震生成区1强震生成区2VR/(km·-1
    N1w1/km初始破裂点tr1/sR1/kmC1N2w2/km初始破裂点tr2/sR2/kmC2
    最小值50.1(1, 1)0.1-300.110.1(1, 1)0.1-500.12.1
    最大值156.0(8, 8)10.0305.0106.0(4, 4)10.0505.03.6
    最优值81.0(4, 4)2.0121.641.0(2, 2)2.0140.72.8
    注:N为子断层细小划分的数目,w为子断层宽, tr为上升时间, R为震中距, VR为破裂速度.
    下载: 导出CSV
  • 金明培, 汪荣江, 屠泓为. 2014. 芦山7级地震的同震位移估计和震源滑动模型反演尝试[J]. 地球物理学报, 57(1): 129--137.

    Jin M P, Wang R J, Tu H W. 2014. Slip model and co-seismic displacement field derived from near-source strong motion records of the Lushan MS7.0 earthquake on 20 April 2013[J]. Chinese Journal of Geophysics, 57(1): 129-137 (in Chinese).
    罗奇峰. 1989. 近场加速度的半经验合成[D]. 哈尔滨: 中国地震局工程力学研究所: 8-14.

    Luo Q F. 1989. The Semi-Empirical Synthesis of Near-Field Ground Motions[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 8-14 (in Chinese).
    张海明. 2006. 复杂断层系统动力学破裂的理论研究和地表影响下的超剪切破裂问题的初步研究[D]. 北京: 北京大学地球科学与空间学院: 1-5.

    Zhang H M. 2006. Theoretical Study on Dynamics Ruptures on Complex Fault Systems and Preliminary Study on Supershear Ruptures Under the Effect of Ground[D]. Beijing: School of Earth and Space Sciences, Peking University: 1-5 (in Chinese).
    中国地震台网中心. 2013. 四川省雅安市芦山县7.0级地震[EB/OL]. [2015-06-10]. http://news.ceic.ac.cn/CC20130420080246.html.

    China Earthquake Networks Center. 2013. MS7.0 earthquake occurred in Lushan, Ya’an city, Sichuan Province[EB/OL]. [2015-06-10]. http://news.ceic.ac.cn/CC20130420080246.html (in Chinese).
    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W H Freeman and Company: 63-113.
    Carroll D L. 2001. FORTRAN genetic algorithm (GA) driver[EB/OL]. [2015-06-10]. http://www.cuaerospace.com/Technology/GeneticAlgorithm/GADriverFreeVersion.aspx.
    Eringen A, Suhubi E. 1975. Elastodynamics, Volume Ⅱ: Liner Theory[M]. New York: Academic Press, Inc: 717-834.
    GCMT. 2013. Global CMT catalog[EB/OL]. [2015-06-10]. http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT4/form?itype=ymd&yr=2013&mo=4&day=20&otype=ymd&oyr=2013&omo=4&oday=21&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.
    Joyner W B, Boore D M. 1986. On simulating large earthquakes by Green’s function addition of smaller earthquakes[C]//Earthquake Source Mechanics. Washington: American Geophysical Union: 269-274.
    USGS. 2013. M6.6: 56 km WSW of Linqiong, China[EB/OL]. [2015-06-10]. http://earthquake.usgs.gov/earthquakes/eventpage/usb000gcdd#general_summary.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  199
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-13
  • 修回日期:  2015-03-10
  • 刊出日期:  2015-07-01

目录

    /

    返回文章
    返回