Equivalent anisotropic first-order pseudo-acoustic wave equations modeling and its efficiency analysis
-
摘要: 为克服各向异性弹性波动方程正演模拟的局限,本文研究了各向异性介质拟声波方程的交错网格有限差分数值解法.首先,从VTI介质胡克定律和qP-qSV波频散关系两种思路出发,通过声假设近似,给出了两种不同形式的VTI介质一阶拟声波方程,并通过引入波场的伪速度分量,推导了一种新的VTI介质一阶应力-速度方程,并通过旋转坐标系将其推广到TTI介质中;其次,构造了一阶拟声波方程的交错网格高阶有限差分格式,并推导了相应的PML边界条件;最后,对本文方法中固有的qSV人为干扰波的产生机制和压制方法进行了简单讨论.数值结果表明:3种一阶拟声波方程在运动学和动力学上是等价的,相对于各向异性弹性波正演模拟,其节省了内存,提高了计算效率;各向异性因素会影响反射波旅行时和振幅等波场特征,在后续的处理、反演和解释中不可忽略;VTI介质HESS模型的逆时偏移结果也验证了本文方法的合理性.Abstract: In order to overcome the limitations of anisotropic elastic wave equations modeling, this paper studied anisotropic pseudo-acoustic wave modeling by using staggered-grid finite-difference method. Starting from two different ideas, i.e., Hooke’s law and qP-qSV dispersion relation for VTI media, two first-order pseudo-acoustic wave equations in two forms for VTI media are given. Meanwhile, a new VTI first-order stress-velocity equations is derived through introducing the pseudo-velocity components of the wavefields, and then they are generalized to TTI media through the rotated coordinate system. Then the staggered-gird high-order finite-difference forms of the first-order pseudo-acoustic wave equations and the corresponding PML boundary condition are deduced. Finally, the inherent qSV-wave artifact generating mechanism and suppression method are discussed briefly. Numerical results show that the three first-order pseudo-acoustic wave equations are equivalent in kinematics and dynamics. Compared with anisotropic elastic wave modeling, they can save computational memory and enhance the efficiency. Anisotropic factor can affect the travel-time and amplitude of the reflection wave so we cannot ignore them in subsequent processing,inversion and interpretation. The reverse-time migration results of VTI-HESS model also validate the method proposed in this paper.
-
图 2 波场快照对比(t=400 ms)
(a)VTI介质弹性波方程正演得到的垂直应力分量波场;(b)用式(2)正演得到的波场q;(c)用式(6)正演得到的波场p;(d)用式(7)正演得到的波场p
Figure 2. Comparison of wavefield snapshots (t=400 ms)
(a)Wavefield of vertical stress component modeled by elastic wave equation in VTI media;(b)Wavefield q modeled by equation(2);(c)Wavefield p modeled by equation(6);(d) Wavefield p modeled by equation(7)
图 4 设置震源环前后各向异性介质拟声波正演的波场快照对比(t=400 ms)
(a)VTI介质(设置震源环前);(b)VTI介质(设置震源环后);(c)TTI介质(设置震源环前,θ=45°);(d)TTI介质(设置震源环后,θ=45°)
Figure 4. Wavefield snapshots comparison of anisotropic pseudo-acoustic wave modeling without and with source box (t=400 ms)
(a)VTI media (without source box);(b)VTI media (with source box);(c)TTI media (without source box, θ=45°);(d)TTI media (with source box, θ=45°)
图 6 单炮地震记录对比
(a,d)用式(2)正演得到的炮记录;(b,e)用式(6)正演得到的炮记录;(c,f)用式(7)正演得到的炮记录;(g)TTI介质拟声波方程正演得到的炮记录;(h)VTI介质弹性波方程正演得到的炮记录;(i)各向同性声波方程正演得到的炮记录.其中,(a)-(c)为设置震源环前的结果;(d)-(f)为设置震源环后的结果
Figure 6. Comparison of single shot seismic records
(a,d) Shot records modeled by equation (2);(b,e) Shot records modeled by equation (6);(c,f) Shot records modeled by equation (7);(g) Shot records modeled by TTI pseudo-acoustic wave equation;(h)Shot records modeled by VTI elastic wave equation;(i) Shot records modeled by isotropic acoustic wave equation. Figs.(a)-(c) are results without source box, and Figs.(d)-(f) are results with source box
图 7 单道地震信号对比
(a)从图6a,b,c中近偏移距(地面位置为1 200 m)处抽取的单道信号对比;(b,c)从图6d e,f中近偏移距(地面位置为1 200 m)和远偏移距(地面位置为200 m)处抽取的单道信号对比;(d,e)从图6f,h中近偏移距(地面位置为1 200 m)和远偏移距(地面位置为200 m)处抽取的单道信号对比;(f,g) 从图6f,g,i中近偏移距(地面位置为1 200 m)和远偏移距(地面位置为200 m)处抽取的单道信号对比
Figure 7. Comparison of single trace seismic signals
Fig.(a) is single trace signals comparison of near offset (distance=1 200 m) extracted from Figs.6a,b,c; Fig.(b) and (c) are single trace signals comparison of near offset (distance=1 200 m) and far offset (distance=200 m) extracted from Figs.6d,e,f; Figs.(d) and (e) are single trace signals comparison between near offset (distance=1 200 m) and far offset (distance=200 m) extracted from Figs.6f, h; Figs.(f) and (g) are single trace signals comparison between near offset(distance=1 200 m) and far offset (distance=200 m) extracted from Figs.6f, g, i
表 1 几种波动方程的计算效率对比
Table 1. Computational efficiency comparison of the several wave equations
方程类型 计算量 平均计算时间/s VTI一阶拟声波方程(2) ∂p/∂x,∂q/∂z,∂u/∂x,∂w/∂z 72 VTI一阶拟声波方程(6) ∂p/∂x,∂p/∂z,∂u/∂x,∂k/∂z,∂w/∂z,∂ζ/∂z 105 VTI一阶拟声波方程(7) ∂p/∂x,∂p/∂z,∂q/∂x,∂q/∂z,∂up/∂x,∂wq/∂z 103 各向同性声波方程 ∂p/∂x,∂p/∂z,∂u/∂x,∂w/∂z 70 VTI弹性波方程 ∂τxx/∂x,∂τxz/∂z,∂τxz/∂x,∂τzz/∂z,∂vx/∂x,∂vx/∂z,
∂vz/∂x,∂vz/∂z130 -
Du X, Fletcher R, Fowler P J. 2008. A new pseudo-acoustic wave equation for VTI media[C]//70th EAGE Conference and Exhibition. Rome: European Association of Geoscientists and Engineers: 1-5. Duveneck E, Milcik P, Bakker P M. 2008. Acoustic VTI wave equations and their application for anisotropic reverse-time migration[C]//SEG Technical Program Expanded Abstracts. Las Vegas: Society of Exploration Geophysicists: 2186-2190. Zhang H, Zhang G. 2009. Removing S-wave noise in TTI reverse time migration[C]//79th International Exposition and Annual Meeting, SEG. Houston: Society of Exploration Geophysicists: 1-5. Zhou H, Zhang G, Zhang Y. 2006. An anisotropic acoustic wave equation for VTI media[C]//68th EAGE Conference and Exhibition. Vienna: European Association of Geoscientists and Engineers: 1-5. -