利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减

鲁志楠 边银菊 王婷婷 刘森

鲁志楠,边银菊,王婷婷,刘森. 2021. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报,43(3):287−302 doi: 10.11939/jass.20200051
引用本文: 鲁志楠,边银菊,王婷婷,刘森. 2021. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报,43(3):287−302 doi: 10.11939/jass.20200051
Lu Z N,Bian Y J,Wang T T,Liu S. 2021. Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography. Acta Seismologica Sinica,43(3):287−302 doi: 10.11939/jass.20200051
Citation: Lu Z N,Bian Y J,Wang T T,Liu S. 2021. Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography. Acta Seismologica Sinica43(3):287−302 doi: 10.11939/jass.20200051

利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减

doi: 10.11939/jass.20200051
基金项目: 核查项目(075440)资助
详细信息
    通讯作者:

    边银菊,e-mail:bianyinju@cea-igp.ac.cn

  • 中图分类号: P315.3+1

Crustal attenuation in the southern Tibetan Plateau by reverse two-station Lg-wave Q value tomography

  • 摘要: 首次基于2017—2019年西藏自治区区域台网27个宽频带固定台站记录的757次地震的波形资料,利用反双台法开展了青藏高原南部地区1 Hz的Lg波Q值层析成像研究。研究中采用3.5—2.4 km/s的速度窗截取了1 981条Lg波,计算得到13 543条路径上的Q值,测试了1°×1°和0.5°×0.5°网格下的棋盘格恢复情况,得到了0.5°×0.5°分辨率的Lg波Q0值层析成像。反演结果显示:青藏高原南部地壳整体的Lg波呈高衰减、低Q值,与P波速度负异常、地热分布及东部的两条裂谷系对应良好,因此推断青藏高原南部地壳存在广泛的熔融物质;两条可能存在的流体-熔融物质通道中,主通道位于亚东—谷露裂谷与桑日—错那裂谷之间,副通道沿雅鲁藏布江缝合带分流而出。此外,还对亚东—谷露裂谷两侧熔融物质的分布差异予以分析,结果表明,印度板块与欧亚板块碰撞前端存在不同的动力学演化模式,亚东—谷露裂谷以西符合缩短增厚理论,以东符合“水泵”模式。

     

  • 图  1  青藏高原南部地区缝合带和地体的分布(蓝色矩形为本文研究区域)

    Figure  1.  Suture zones and terranes distribution in the southern Tibetan Plateau(The blue box is the research area of this study)

    图  2  反双台法几何路径示意图

    (a) 理想条件下;(b) 实际条件下

    Figure  2.  Schematic diagram for the geometry of the reverse two-station method

    (a) An ideal recording geometry;(b) A more practical geometry

    图  3  本文反双台法计算所用台站及地震事件的分布

    Figure  3.  Distribution of seismic stations and earthquakes calculated by reverse two-station method in this paper

    图  4  Pn波与Lg波窗口的拾取实例

    Figure  4.  An example showing the Pn-waves and the window of Lg-waves

    图  5  每个网格经过的Q0射线数量

    Figure  5.  Number of Q0 rays per grid

    图  6  Q0射线分布直方图

    Figure  6.  Q0 values distribution histogram

    图  7  1°×1° (a)和0.5°×0.5° (b)网格下的棋盘格测试结果

    Figure  7.  The checkerboard test results with gridding of 1°×1° (a) and 0.5°×0.5° (b)

    图  8  青藏高原南部地区Lg波Q0值层析成像

    Figure  8.  Lg-wave Q0 value tomography of the southern Tibetan Plateau

    图  9  青藏高原南部熔融通道(红色实线区域)的推断示意图

    Ⅰ ,Ⅱ ,Ⅲ和Ⅳ代表四个由雅鲁藏布江缝合带和亚东—谷露裂谷划分的地块

    Figure  9.  The inference of melting channels in the southern Tibetan Plateau

    The area delineated by red solid lines denotes melting channels,and the symbols of Ⅰ ,Ⅱ ,Ⅲ and Ⅳ represent four blocks separated by the Yarlung Zangbo suture and Yadong-Gulu rift

  • [1] 艾印双,郑天愉. 1997. 青藏高原地震活动及其构造背景[J]. 地球物理学进展,12(2):30–40.
    [2] Ai Y S,Zheng T Y. 1997. Seismic activity in Tibetan Plateau and its tectonic implication[J]. Progress in Geophysics,12(2):30–40 (in Chinese).
    [3] 白嘉启,梅琳,杨美伶. 2006. 青藏高原地热资源与地壳热结构[J]. 地质力学学报,12(3):354–362. doi: 10.3969/j.issn.1006-6616.2006.03.010
    [4] Bai J Q,Mei L,Yang M L. 2006. Geothermal resource and crustal thermal structure of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics,12(3):354–362 (in Chinese).
    [5] 才巴央增,赵俊猛. 2018. 藏南裂谷系的研究综述[J]. 地震研究,41(1):14–21. doi: 10.3969/j.issn.1000-0666.2018.01.002
    [6] Caibayangzeng,Zhao J M. 2018. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research,41(1):14–21 (in Chinese).
    [7] 冯昭贤,赵文津. 1997. INDEPTH与INDEPTH-MT项目简介[J]. 现代地质,11(3):363–365.
    [8] Feng Z X,Zhao W J. 1997. Simple introduction to project INDEPTH and subproject NDEPTH-MT[J]. Geoscience,11(3):363–365 (in Chinese).
    [9] 何静,吴庆举,李永华,雷建设. 2017. 天然地震Lg波衰减研究进展及其在中国大陆地区的应用[J]. 地球物理学进展,32(2):466–475. doi: 10.6038/pg20170204
    [10] He J,Wu Q J,Li Y H,Lei J S. 2017. Developments of earthquake Lg-wave attenuation study and its application in the continental China[J]. Progress in Geophysics,32(2):466–475 (in Chinese).
    [11] 李仕虎,黄宝春,朱日祥. 2012. 青藏高原东南缘构造旋转的古地磁学证据[J]. 地球物理学报,55(1):76–94. doi: 10.6038/j.issn.0001-5733.2012.01.008
    [12] Li S H,Huang B C,Zhu R X. 2012. Paleomagnetic constraints on the tectonic rotation of the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,55(1):76–94 (in Chinese). doi: 10.1002/cjg2.1702
    [13] 李永华,吴庆举. 2007. 中国地学热点研究区几个地学问题的探讨[J]. 国际地震动态,(9):11–19. doi: 10.3969/j.issn.0253-4975.2007.09.003
    [14] Li Y H,Wu Q J. 2007. Study on some “Hot Spot” areas of geo-sciences in China[J]. Recent Developments in World Seismology,(9):11–19 (in Chinese).
    [15] 李娱兰. 2019. 青藏高原地震活动性及冈底斯成矿带东段上地幔顶部Pn波速度结构[D]. 北京: 中国地震局地球物理研究所: 1–8.
    [16] Li Y L. 2019. Seismicity of the Qinghai-Tibet Plateau and Velocity Structure of Pn Wave on the Top of the Upper Mantle in the Eastern Gangdise Metallogenic Belt[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–8 (in Chinese).
    [17] 刘建华,刘福田,阎晓蔚,胥颐,郝天珧. 2004. 华北地区Lg尾波衰减研究:Lg尾波Q0地震成像[J]. 地球物理学报,47(6):1044–1052. doi: 10.3321/j.issn:0001-5733.2004.06.017
    [18] Liu J H,Liu F T,Yan X W,Xu Y,Hao T Y. 2004. A study of Lg coda attenuation beneath North China:Seismic imaging Lg coda Q0[J]. Chinese Journal of Geophysics,47(6):1044–1052 (in Chinese).
    [19] 吴中海,叶培盛,王成敏,张克旗,赵华,郑勇刚,尹金辉,李虎侯. 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学:中国地质大学学报,40(10):1621–1642.
    [20] Wu Z H,Ye P S,Wang C M,Zhang K Q,Zhao H,Zheng Y G,Yin J H,Li H H. 2015. The relics,ages and significance of prehistoric large earthquakes in the Angang graben in south Tibet[J]. Earth Science:Journal of China University of Geosciences,40(10):1621–1642 (in Chinese). doi: 10.3799/dqkx.2015.147
    [21] 喻成,乔学军,王伟,史永明. 2014. 亚东—谷露裂谷带与块体运动的特征[J]. 大气测量与地球动力学,34(2):36–40.
    [22] Yu C,Qiao X J,Wang W,Shi Y M. 2014. Characteristics of crust deformation in Yadong-Gulu rift and its surrounding areas with GPS data[J]. Journal of Geodesy and Geodynamics,34(2):36–40 (in Chinese).
    [23] 张戈铭,李细兵,郑晨,宋晓东. 2019. 青藏高原中东部地壳和上地幔顶部P波层析成像[J]. 地震学报,41(4):411–424. doi: 10.11939/jass.20190003
    [24] Zhang G M,Li X B,Zheng C,Song X D. 2019. Crustal and uppermost mantle velocity structure beneath the central eastern Tibetan Plateau from P-wave tomography[J]. Acta Seismologica Sinica,41(4):411–424 (in Chinese).
    [25] 张衡,赵俊猛,徐强. 2011. 西藏东部地区层析成像及东南部裂谷成因讨论[J]. 科学通报,56(27):2328–2334.
    [26] Zhang H,Zhao J M,Xu Q. 2011. Seismic P-wave tomography in eastern Tibet:Formation of the rifts[J]. Chinese Science Bulletin,56(23):2450–2455. doi: 10.1007/s11434-011-4577-x
    [27] 张红亮. 2010. 藏北水热活动的地质背景研究[D]. 北京: 中国地质大学(北京): 13–17.
    [28] Zhang H L. 2010. Study on the Geological Background of Hydrothermal Activities in North Tibet[D]. Beijing: China University of Geosciences (Beijing): 13–17 (in Chinese).
    [29] 张锦玲,朱新运,马起杨. 2019. 宁夏地区Lg波衰减及场地响应特征[J]. 地震学报,41(4):425–434. doi: 10.11939/jass.20180134
    [30] Zhang J L,Zhu X Y,Ma Q Y. 2019. Lg-wave attenuation and site response in Ningxia region[J]. Acta Seismologica Sinica,41(4):425–434 (in Chinese).
    [31] 赵连锋,谢小碧,王卫民,姚振兴. 2018. 中国东北和朝鲜半岛地区地壳Lg波宽频带衰减模型[J]. 地球物理学报,61(3):856–871. doi: 10.6038/cjg2018L0394
    [32] Zhao L F,Xie X B,Wang W M,Yao Z X. 2018. A broadband crustal Lg wave attenuation model in Northeast China and the Korean Peninsula[J]. Chinese Journal of Geophysics,61(3):856–871 (in Chinese).
    [33] 赵文津,吴珍汉,史大年,熊嘉育,薛光琦,宿和平,胡道功,叶培盛. 2008. 国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J]. 地球学报,29(3):328–342. doi: 10.3321/j.issn:1006-3021.2008.03.007
    [34] Zhao W J,Wu Z H,Shi D N,Xiong J Y,Xue G Q,Su H P,Hu D G,Ye P S. 2008. Comprehensive deep profiling of Tibetan Plateau in the INDEPTH project[J]. Acta Geoscientica Sinica,29(3):328–342 (in Chinese).
    [35] 周蕙兰. 1990. 地球内部物理[M]. 北京: 地震出版社: 218–237.
    [36] Zhou H L. 1990. Physics of the Earths Interior[M]. Beijing: Seismological Press: 218–237 (in Chinese).
    [37] 周连庆,赵翠萍,修济刚,陈章立. 2008a. 川滇地区Lg波Q值层析成像[J]. 地球物理学报,51(6):1745–1752.
    [38] Zhou L Q,Zhao C P,Xiu J G,Chen Z L. 2008a. Tomography of Q Lg in Sichuan-Yunnan zone[J]. Chinese Journal of Geophysics,51(6):1745–1752 (in Chinese).
    [39] 周连庆,赵翠萍,修济刚,陈章立,郑斯华. 2008b. 利用天然地震研究地壳Q值的方法和进展[J]. 国际地震动态,(2):1–11.
    [40] Zhou L Q,Zhao C P,Xiu J G,Chen Z L,Zheng S H. 2008b. Methods and developments of research on crustal Q value by using earthquakes[J]. Recent Developments in World Seismology,(2):1–11 (in Chinese).
    [41] 朱新运. 2016. 华北盆地Lg波衰减及台站场地响应特征[J]. 地球科学,41(12):2109–2117.
    [42] Zhu X Y. 2016. Characteristics of Lg wave attenuation and site response in North China basin[J]. Earth Science,41(12):2109–2117 (in Chinese).
    [43] Al-Damegh K,Sandvol E,Al-Lazki A,Barazangi M. 2004. Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions[J]. Geophys J Int,157(2):775–795. doi: 10.1111/j.1365-246X.2004.02246.x
    [44] Armijo R,Tapponnier P,Han T. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. J Seismol Res,94(B3):2787–2838.
    [45] Bao X Y,Sandvol E,Ni J,Hearn T,Chen Y J,Shen Y. 2011a. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophys Res Lett,38(16):L16304.
    [46] Bao X Y,Sandvol E,Zor E,Sakin S,Mohamad R,Gök R,Mellors R,Godoladze T,Yetirmishli G,Türkelli N. 2011b. Pg attenuation tomography within the northern Middle East[J]. Bull Seismol Soc Am,101(4):1496–1506. doi: 10.1785/0120100316
    [47] Brown L D,Zhao W,Nelson K D,Hauck M,Alsdorf D,Ross A,Cogan M,Clark M,Liu X,Che J. 1996. Bright spots,structure,and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science,274(5293):1688–1690. doi: 10.1126/science.274.5293.1688
    [48] Campillo M,Plantet J L,Bouchon M. 1985. Frequency-dependent attenuation in the crust beneath central France from Lg waves:Data analysis and numerical modeling[J]. Bull Seismol Soc Am,75(5):1395–1411.
    [49] Chen Q Z,Freymueller J T,Wang Q,Yang Z Q,Xu C J,Liu J N. 2004. A deforming block model for the present‐day tectonics of Tibet[J]. J Geophys Res,109(B1):B01403.
    [50] England P C,Houseman G A. 1988. The mechanics of the Tibetan Plateau[J]. Phil Trans R Soc Lond A,326(1589):301–320. doi: 10.1098/rsta.1988.0089
    [51] Fan G W,Lay T. 2002. Characteristics of Lg attenuation in the Tibetan Plateau[J]. J Geophys Res,107(B10):2256.
    [52] Fan G W,Lay T. 2003. Strong Lg attenuation in the northern and eastern Tibetan Plateau measured by a two-station/two-event stacking method[J]. Geophys Res Lett,30(10):1530.
    [53] Ford S R,Dreger D S,Mayeda K,Walter W R,Malagnini L,Phillips W S. 2008. Regional attenuation in northern California:A comparison of five 1D Q methods[J]. Bull Seismol Soc Am,98(4):2033–2046. doi: 10.1785/0120070218
    [54] Gök R,Sandvol E,Türkelli N,Seber D,Barazangi M. 2003. Sn attenuation in the Anatolian and Iranian Plateau and surrounding regions[J]. Geophys Res Lett,30(24):8042.
    [55] Herrmann R B. 1980. Q estimates using the coda of local earthquake[J]. Bull Seismol Soc Am,70(4):447–468.
    [56] Hu S B,He L J,Wang J Y. 2000. Heat flow in the continental area of China:A new data set[J]. Earth Planet Sci Lett,179(2):407–419. doi: 10.1016/S0012-821X(00)00126-6
    [57] Li S H,Unsworth M J,Booker J R,Wei W B,Tan H D,Jones A G. 2003. Partial melt or aqueous fluid in the mid-crust of southern Tibet?Constraints from INDEPTH magnetotelluric data[J]. Geophys J Int,153(2):289–304. doi: 10.1046/j.1365-246X.2003.01850.x
    [58] McNamara D T,Owens T J,Walter W R. 1996. Propagation characteristics of Lg across the Tibetan Plateau[J]. Bull Seismol Soc Am,86(2):457–469.
    [59] Mitchell B J. 1980. Frequency dependence of shear wave internal friction in the continental crust of eastern North America[J]. J Geophys Res,85(B10):5212–5218. doi: 10.1029/JB085iB10p05212
    [60] Myers S C,Beck S,Zandt G,Wallace T. 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves[J]. J Geophys Res,103(B9):21233–21252. doi: 10.1029/98JB00956
    [61] Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Leshou C,Tan H D,Wei W B,Jones A G,Booker J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C D,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684
    [62] Ni J,Barazangi M. 1983. High-frequency seismic wave propagation beneath the Indian shield,Himalayan arc,Tibetan Plateau and surrounding regions:High uppermost mantle velocities and efficient Sn propagation beneath Tibet[J]. Geophys J R astr Soc,72(3):665–689. doi: 10.1111/j.1365-246X.1983.tb02826.x
    [63] Nuttli O W. 1980. The excitation and attenuation of seismic crustal phases in Iran[J]. Bull Seismol Soc Am,70(2):469–485.
    [64] Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse lest squares[J]. ACM Trans Math Software,8(1):43–71. doi: 10.1145/355984.355989
    [65] Phillips W S,Hartse H E,Taylor S R,Randall G E. 2000. 1 Hz Lg Q tomography in central Asia[J]. Geophys Res Lett,27(20):3425–3428. doi: 10.1029/2000GL011482
    [66] Press F,Ewing M. 1952. Two slow surface waves across North America[J]. Bull Seismol Soc Am,42(3):219–228. doi: 10.1785/BSSA0420030219
    [67] Reese C C,Rapine R R,Ni J F. 1999. Lateral variation of Pn and Lg attenuation at the CDSN station LSA[J]. Bull Seismol Soc Am,89(1):325–330. doi: 10.1785/BSSA0890010325
    [68] Ringdal F,Marshall P D,Alewine R W. 1992. Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site[J]. Geophys J Int,109(1):65–77. doi: 10.1111/j.1365-246X.1992.tb00079.x
    [69] Ruzaikin A I,Nersesov I L,Khalturin V I,Molnar P. 1977. Propagation of Lg and lateral variations in crustal structure in Asia[J]. J Geophys Res,82(2):307–316. doi: 10.1029/JB082i002p00307
    [70] Sato R. 1967. Attenuation of seismic waves[J]. J Phys Earth,15(2):32–61. doi: 10.4294/jpe1952.15.32
    [71] Shin T C,Herrmann R B. 1987. Lg attenuation and source studies using 1982 Miramichi data[J]. Bull Seismol Soc Am,77(2):384–397.
    [72] Singh C,Shekar M,Singh A,Chadha R K. 2012. Seismic attenuation characteristics along the Hi-CLIMB profile in Tibet from Lg Q inversion[J]. Bull Seismol Soc Am,102(2):783–789. doi: 10.1785/0120110145
    [73] Singh S,Herrmann R B. 1983. Regionalization of crustal coda Q in the continental United States[J]. J Geophys Res,88(B1):527–538. doi: 10.1029/JB088iB01p00527
    [74] Tapponnier P,Mercier J L,Armijo R,Han T L,Zhou J. 1981. Field evidence for active normal faulting in Tibet[J]. Nature,294(5840):410–414. doi: 10.1038/294410a0
    [75] Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P R. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [76] Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978
    [77] USGS. 2019. Search earthquake catalog[EB/OL]. [2019-09-01]. https://earthquake.usgs.gov/earthquakes/search.
    [78] Wei W B,Unsworth M,Jones A,Booker J,Tan H D,Nelson D,Chen L S,Li S H,Solon K,Bedrosian P,Jin S,Deng M,Ledo J,Kay D,Roberts B. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science,292(5517):716–719. doi: 10.1126/science.1010580
    [79] Xie J. 2002. Lg Q in the eastern Tibetan Plateau[J]. Bull Seismol Soc Am,92(2):871–876. doi: 10.1785/0120010154
    [80] Xie J,Mitchell B J. 1990a. Attenuation of multiphase surface waves in the Basin and Range Province,part I:Lg and Lg coda[J]. Geophys J Int,102(1):121–137. doi: 10.1111/j.1365-246X.1990.tb00535.x
    [81] Xie J,Mitchell B J. 1990b. A back-projection method for imaging large-scale lateral variations of Lg coda Q with application to continental Africa[J]. Geophys J Int,100(1):161–181.
    [82] Xie J,Gok R,Ni J,Aoki Y. 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion[J]. J Geophys Res,109(B10):B10308.
    [83] Xie J K. 1998. Spectral inversion using Lg from earthquakes:Improvement of the method with applications to the 1995,western Texas earthquake sequence[J]. Bull Seismol Soc Am,88(6):1525–1537.
    [84] Yang X N. 2002. A numerical investigation of Lg geometrical spreading[J]. Bull Seismol Soc Am,92(8):3067–3079. doi: 10.1785/0120020046
    [85] Zhao L F,Xie X B,Wang W M,Zhang J H,Yao Z X. 2010. Seismic Lg-wave Q tomography in and around Northeast China[J]. J Geophys Res,115(B8):B08307.
    [86] Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013a. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122. doi: 10.1016/j.jpgl.2013.09.038
    [87] Zhao L F,Xie X B,Wang W M,Zhang J H,Yao Z X. 2013b. Crustal Lg attenuation within the North China Craton and its surrounding regions[J]. Geophys J Int,195(1):513–531. doi: 10.1093/gji/ggt235
    [88] Zhao W L,Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust:A two-dimensional finite element model study[J]. Tectonics,6(4):489–504. doi: 10.1029/TC006i004p00489
  • 加载中
图(9)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  185
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-04
  • 修回日期:  2020-09-12
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回