Volume 43 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Chen T,Yi Y Y. 2021. Random noise suppression of seismic data based on deep convolution neural network. Acta Seismologica Sinica,43(4):474−482 doi: 10.11939/jass.20200135
Citation: Chen T,Yi Y Y. 2021. Random noise suppression of seismic data based on deep convolution neural network. Acta Seismologica Sinica43(4):474−482 doi: 10.11939/jass.20200135

Random noise suppression of seismic data based on deep convolution neural network

doi: 10.11939/jass.20200135
  • Received Date: 2020-08-07
  • Rev Recd Date: 2020-11-19
  • Available Online: 2021-08-16
  • Publish Date: 2021-07-15
  • Random noise suppression of seismic data is essential in seismic data processing. Since the seismic data recorded by the geophone is usually noisy, this kind of noisy data can be regarded as a manifestation of low signal-to-noise ratio. Low SNR data will affect subsequent processing of seismic data, such as migration and imaging. In this paper, we aim to improve the imaging quality of seismic data and propose an intelligent noise reduction framework for convolutional neural network to adaptively learn seismic signals from noisy seismic data. In order to speed up network training and avoid gradient disappearance during training, we add residual learning and batch normalization methods to the network, and use ReLU activation function and Adam optimization algorithm to optimize the network. In addition, the two datasets, Marmousi and F3, are used to train and test the network. A fully trained network can not only retain weak features in learning, but also remove random noise. First, fully train the network, extract random noise from it, and retain the learned seismic data features, and then estimate the waveform features in the test set by reconstructing the seismic data. The processing results of synthetic records and field data show the potential of deep convolutional neural network in random noise suppression tasks, and experimental verification shows that the deep convolutional neural network framework has a good denoising effect.


  • loading
  • [1]
    Han W X,Zhou Y T,Chi Y. 2018. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Petroleum Geophysical Exploration,57(6):862–869,877 (in Chinese).
    Liu T T,Chen Y K. 2016. Random noise attenuation based on EMD and MSSA in f-x domain[J]. Petroleum Geophysical Exploration,55(1):67–75 (in Chinese).
    Wang Y Q,Lu W K,Liu J L,Zhang M,Miao Y K. 2019. Random seismic noise attenuation based on data augmentation and CNN[J]. Chinese Journal of Geophysics,62(1):427–439 (in Chinese).
    Buades A,Coll B,Morel J M. 2005. A review of image denoising algorithms with a new one[J]. Multiscale Model Sm,4(2):490–530. doi: 10.1137/040616024
    Chen W,Chen Y K,Cheng Z X. 2017. Seismic time-frequency analysis using an improved empirical mode decomposition algorithm[J]. J Seism Explorat,26(4):367–380.
    Chen W,Bai M,Song H. 2019a. Seismic noise attenuation based on waveform classification[J]. J Appl Geophys,167:118–127. doi: 10.1016/j.jappgeo.2019.05.014
    Chen Y K,Chen W,Wang Y,Bai M. 2019b. Least-squares decomposition with time-space constraint for denoising microseismic data[J]. Geophys J Int,218(3):1702–1718. doi: 10.1093/gji/ggz145
    Chen Y K,Zu S H,Chen W,Zhang M,Guan Z. 2019c. Learning the blending spikes using sparse dictionaries[J]. Geophys J Int,218(2):1379–1397. doi: 10.1093/gji/ggz200
    Dabov K,Foi A,Katkovnik V. 2007. Image denoising by sparse 3D transform-domain collaborative ltering[J]. IEEE T Image Process,16(8):2082–2094.
    Duchi J,Hazan E,Singer Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res,12(7):2121–2159.
    He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern RecognitionCVPR). Las Vegas: IEEE: 770–778.
    Li P,Chen Z K,Yang L T,Gao J,Zhang Q C,Deen M J. 2017. Deep convolutional computation model for feature learning on big data in internet of things[J]. IEEE Trans Ind Inform,15(3):1341–1349.
    Liu J L,Lu W K,Zhang Y Q. 2017. Adaptive multiple subtraction based on sparse coding[J]. IEEE Trans Geosci Remote Sens,55(3):1318–1324. doi: 10.1109/TGRS.2016.2622399
    Ioffe S, Szegedy C. 2015. Batch normalization: Acceletating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille, France: PMLR: 448–456.
    Stumpf A,Lachiche N,Malet J P,Kerle N,Puissant A. 2014. Active learning in the spatial domain for remote sensing image classification[J]. IEEE Trans Geosci Remote Sens,52(5):2492–2507. doi: 10.1109/TGRS.2013.2262052
    Ullah A,Ahmad J,Muhammad K,Sajjad M,Baik S W. 2017. Action recognition in video sequences using deep Bi-directional LSTM with CNN features[J]. IEEE Access,6:1155–1166.
    Vincent P,Larochelle H,Lajoie I,Bengio Y,Manzagol P A. 2010. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. J Mach Learn Res,11(12):3371–3408.
    Wang F,Chen S C. 2019. Residual learning of deep convolutional neural network for seismic random noise attenuation[J]. IEEE Geosci Remote Sens Lett,16(8):1314–1318. doi: 10.1109/LGRS.2019.2895702
    Yuan S Y,Liu J W,Wang S X,Wang T Y,Shi P D. 2018. Seismic waveform classification and first-break picking using convolution neural networks[J]. IEEE Geosci Remote Sens Lett,15(2):272–276. doi: 10.1109/LGRS.2017.2785834
    Zhao Y X,Li Y,Dong X T,Yang B J. 2019. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. IEEE Geosci Remote Sens Lett,16(5):811–815. doi: 10.1109/LGRS.2018.2882058
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (189) PDF downloads(38) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint