Volume 43 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Li Z C,Gao M T,Sun J Z,Chen X L,Zhang B. 2021. Empirical relationship of stochastic uncertainty of source parameters in relative local area. Acta Seismologica Sinica,43(4):483−497 doi: 10.11939/jass.20200153
Citation: Li Z C,Gao M T,Sun J Z,Chen X L,Zhang B. 2021. Empirical relationship of stochastic uncertainty of source parameters in relative local area. Acta Seismologica Sinica43(4):483−497 doi: 10.11939/jass.20200153

Empirical relationship of stochastic uncertainty of source parameters in relative local area

doi: 10.11939/jass.20200153
  • Received Date: 2020-09-02
  • Rev Recd Date: 2020-11-09
  • Available Online: 2021-08-16
  • Publish Date: 2021-07-15
  • In the numerical simulation of strong ground motion of future destructive earthquakes, the accuracy of source parameters selection has a great impact on the results of ground motion prediction. There are many uncertain factors in determining source parameters, including both random and cognitive uncertainties. Based on a large number of seismic events and literature researches, this paper focuses on statistical analysis of source parameters with random uncertainty characteristics by using statistical methods. Through regression analysis, a mathematical model is established to explain the randomness and uncertainty of source parameters in the form of empirical formula. In order to study the scaling relation characteristics of source parameters in local regions, we get more empirical relations which are more suitable for local seismic densely regions, especially those of the local regions including the Chinese mainland. This paper more than 1 700 seismic events with MW≥5.5 are selected from the global CMT catalogue. The empirical relationship of source parameters in earthquake intensive areas is studied by using statistical methods, including focal depth, magnitude, seismic moment, rupture area, etc. The number of seismic samples of asperity in a relatively large local range is increased, so as to obtain more suitable experience for local areas to calculate source parameters from the perspective of statistics relationship. The statistical results show that there are differences between the empirical relationship of source parameters obtained from local earthquake cases and those obtained from unlimited regional cases, especially when it comes to fault rupture area and asperity related parameters. The empirical relationship of source parameters obtained from local earthquake cases is more representative. When using the empirical formula obtained in this paper to calculate the focal parameters required for the strong ground motion of future destructive earthquakes, the ground motion prediction results will better reflect the real ground motion characteristics of the target area. It could improve the reliability of the ground motion prediction results.

     

  • loading
  • [1]
    Che Z C, Luo J H, Liu L. 2011. Introduction to the New Regional Geotectonics of China and Its Adjacent Area[M]. 2nd ed. Beijing: Science Press: 1–20 (in Chinese).
    [2]
    Chen Y T, Gu H D. 2012. The Basis Theory of Seismic Source[M]. Beijing: Graduate University of Chinese Academy of Sciences: 175–185 (in Chinese).
    [3]
    Cheng J. 2017. Seismic Hazard Modeling of the Sichuan-Yunnan Regions[D]. Beijing: Institute of Geology, China Earthquake Administration: 1–10 (in Chinese).
    [4]
    China Earthquake Administration Lanzhou Institute of Seismology. 1992. Changma Active Fault Belt[M]. Beijing: Seismological Press (in Chinese).
    [5]
    Editorial Group of 1976 Tangshan Earthquake, State Seismological Bureau. 1982. The Mammoth Tangshan Earthquake of 1976[M]. Beijing: Seismological Press: 1–20 (in Chinese).
    [6]
    Guo L C,Pang M H. 1981. Surface-wave magnitude of earthquakes and its station correction[J]. Acta Seismologica Sinica,3(3):312–320 (in Chinese).
    [7]
    Hu F Q,Liu J Y. 1994. Deep-seated structures on the Northern part of Koktokay-Aksay deep sounding profile and its correlation with earthquake[J]. Inland Earthquake,8(2):152–158 (in Chinese).
    [8]
    Huang J Q. 1980. Geotectonic Evolution of China[M]. Beijing: Science Press: 1–20 (in Chinese).
    [9]
    Li Q C. 2010. Research on Ground Motion Simulation with Empirical Green’s Function Method[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–10 (in Chinese).
    [10]
    Li S G. 1973. Introduction to Geomechanics[M]. Beijing: Science Press: 1–20 (in Chinese).
    [11]
    Li Z F. 2013. A Study on Inhomogeneous Bodies of Strong Earthquake Rupture Plane and its Application to Seismic Hazard Analysis[D]. Beijing: China Earthquake Administration: 33–35 (in Chinese).
    [12]
    Li Z F. 2014. A study on inhomogeneous bodies of strong earthquake rupture plane and its application to seismic hazard analysis[J]. Recent Developments in World Seismology,(9):42–45 (in Chinese).
    [13]
    Ma S T,Yao Z X,Ji C. 1997. The focal mechanism solution for March 19,1996 MS6.9 earthquake in Xin-jiang,Jia-shi region and related problems[J]. Acta Geophysica Sinica,40(6):782–790 (in Chinese).
    [14]
    Pan H. 2000. Study on Uncertainties in the Parameters of PSHA[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 10–20 (in Chinese).
    [15]
    Ren J S,Wang Z X,Chen B W,Jiang C F,Niu B G,Li J T,Xie G L,He Z J,Liu Z G. 1997. A new generation tectonic map of China[J]. Regional Geology in China,16(3):225–230,248 (in Chinese).
    [16]
    Tang R C,Li T S,Li J C. 1980. Preliminary understanding of geological tectonic background and genesis of the Dangxiong MS7.5 earthquake[J]. Journal of Seismological Research,(1):87–96 (in Chinese).
    [17]
    Wang C Y,Zhu C N,Liu Y Q. 1978. Determination of earthquake fault parameter for the Tonghai earthquake from ground deformation data[J]. Acta Geophysica Sinica,21(3):191–198 (in Chinese).
    [18]
    Wang H Y. 2004. Finite Fault Source Model for Predicting Near-Field Strong Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 23–26 (in Chinese).
    [19]
    Wang H Y,Tao X X. 2005. Characterizing a shallow earthquake asperity model for predicting near field strong ground motion[J]. Journal of Harbin Institute of Technology,37(11):1533–1539 (in Chinese).
    [20]
    Wang H Y. 2010. Prediction of acceleration field of the 14 April 2010 Yushu earthquake[J]. Chinese Journal of Geophysics,53(10):2345–2354 (in Chinese).
    [21]
    Wang K,Gao L P,Yao Z X,Zhang S S. 1991. Source mechanism of the 1988 Lancang-Gengma China earthquake[J]. Acta Geophysica Sinica,34(5):569–580 (in Chinese).
    [22]
    Wen R Z,Ren Y F,Qi W H,Lu T,Yang Z Y,Shan Z D,Wang Y L. 2013. Maximum acceleration recording from Lushan earthquake on April 20,2013[J]. Journal of Southwest Jiaotong University,48(5):783–791 (in Chinese).
    [23]
    Wu D. 2008. The Semi-empirical Synthesis of Ground Motions Basing on Asperity Model[D]. Shanghai: Tongji University: 19–30 (in Chinese).
    [24]
    Yao X D,Zhang W B. 2015. Strong ground motion simulation for the 2013 MS7.0 Lushan,China,earthquake[J]. Acta Seismologica Sinica,37(4):599–616 (in Chinese).
    [25]
    Yao X D,Zhang W B,Yu X W. 2015. Simulation of near-field strong ground motion caused by the 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics,58(3):886–903 (in Chinese).
    [26]
    Zhang J L,Chen C Y,Hu C Z,Yang P X,Xiong R W,Li Z M,Ren J W. 2010. Surface rupture and coseismic displacement of the Yushu MS7.1 earthquake,China[J]. Earthquake,30(3):1–12 (in Chinese).
    [27]
    Zhang Q. 2016. Study on Regional Differentiation of Ground Motion Attenuation Relationship[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–10 (in Chinese).
    [28]
    Li Y Q Y. 1992. Seismology in Disaster Prevention Engineering[M]. Beijing: Earthquake Press: 1–20 (in Chinese).
    [29]
    Abe K. 1975. Reliable estimation of the seismic moment of large earthquakes[J]. J Phys Earth,23(4):381–390. doi: 10.4294/jpe1952.23.381
    [30]
    Chen S Z,Atkinson G M. 2002. Global comparisons of earthquake source spectra[J]. Bull Seismol Soc Am,92(3):885–895. doi: 10.1785/0120010152
    [31]
    Chiou B,Youngs R,Abrahamson N,Addo K. 2010. Ground-motion attenuation model for small-to-moderate shallow crustal earthquakes in California and its implications on regionalization of ground-motion prediction models[J]. Earthq Spectra,26(4):907–926. doi: 10.1193/1.3479930
    [32]
    Douglas J. 2004. An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions[J]. J Seismol,8(4):485–496. doi: 10.1007/s10950-004-3094-7
    [33]
    Duda S J,Kaiser D. 1989. Spectral magnitudes,magnitude spectra and earthquake quantification; The stability issue of the corner period and of the maximum magnitude for a given earthquake[J]. Tectonophysics,166(1/3):205–211,215–219.
    [34]
    Gutenberg B. 1945. Magnitude determination for deep-focus earthquakes[J]. Bull Seismol Soc Am,35(3):117–130. doi: 10.1785/BSSA0350030117
    [35]
    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348
    [36]
    Hanks T C,Johnston A C. 1992. Common features of the excitation and propagation of strong ground motion for North American earthquakes[J]. Bull Seismol Soc Am,82(B5):1–23.
    [37]
    Kanamori H. 1977. The energy release in great earthquakes[J]. J Geophys Res,82(20):2981–2987. doi: 10.1029/JB082i020p02981
    [38]
    Mahani A B,Atkinson G M. 2013. Regional differences in ground-motion amplitudes of small-to-moderate earthquakes across North America[J]. Bull Seismol Soc Am,103(5):2604–2620. doi: 10.1785/0120120350
    [39]
    Sato R. 1979. Theoretical basis on relationships between focal parameters and earthquake magnitude[J]. J Phys Earth,27(5):353–372. doi: 10.4294/jpe1952.27.353
    [40]
    Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
    [41]
    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.
    [42]
    Miyake H,Iwata T,Irikura K. 2003. Source characterization for broadband ground-motion simulation:Kinematic heterogeneous source model and strong motion generation area[J]. Bull Seismol Soc Am,93(6):2531–2545. doi: 10.1785/0120020183
    [43]
    Slemmons D B, Bodin P, Zhang X. 1989. Determination of Earthquake Size From Surface Faulting Events[D]. Guangzhou: Proceedings of International Seminar on Seismic Zonation: 157–169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article views (296) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return