Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Li X,Feng L L,Zhao Y H,Liu L,Gou Z D,Fan W J,He M Q,Liao X F,Aisa Yisimayili. 2021. Anomalous characteristics of geomagnetic vertical strength polarization before the Milin MS6.9 earthquake in 2017. Acta Seismologica Sinica,43(5):584−594 doi: 10.11939/jass.20200196
Citation: Li X,Feng L L,Zhao Y H,Liu L,Gou Z D,Fan W J,He M Q,Liao X F,Aisa Yisimayili. 2021. Anomalous characteristics of geomagnetic vertical strength polarization before the Milin MS6.9 earthquake in 2017. Acta Seismologica Sinica43(5):584−594 doi: 10.11939/jass.20200196

Anomalous characteristics of geomagnetic vertical strength polarization before the 2017 Milin MS6.9 earthquake in Tibet

doi: 10.11939/jass.20200196
  • Received Date: 2020-12-03
  • Rev Recd Date: 2021-02-26
  • Available Online: 2021-07-30
  • Publish Date: 2021-09-30
  • Based on the second sampling data from 65 geomagnetic stations in Chinese mainland, we extracted the ultra-low frequency electromagnetic anomaly signals from the epicenter of the 2017 Milin MS6.9 earthquake in Tibet and its vicinity using geomagnetic vertical strength polarization method, and analyzed their spatio-temporal evolution characteristics. The results show that a large range of geomagnetic vertical strength polarization high value anomalies appeared in the Qinghai-Xizang (Tibetan) Plateau before the MS6.9 earthquake, and the abnormal process lasted for nine days. The high value anomaly began on October 30, 2017. The high value lasted for three days, followed by a short period of decline, a turning point and an increase. Afterwards the high value anomaly appeared again and lasted for four days. In this process, the time-series curves of each high-value station show single peak or double peak. The spatial distribution map shows that high value anomalies occur repeatedly in the western part of Chinese mainland, especially at the junction of Bayankhara and Qiangtang blocks on the Tibetan Plateau. The anomaly appeared, expanded, contracted, disappeared, expanded and disappeared, and the abnormal area reached its maximum value on October 31. Ten days after the end of the abnormal process, the Milin MS6.9 earthquake occurred, with its epicenter 5 km from the anomaly threshold line of October 31. Comprehensive analysis indicates that this anomaly has strong temporal and spatial correlation with the Millin earthquake and can be regarded as reliable seismic electromagnetic precursor.

     

  • loading
  • [1]
    Du A M,Zhou Z J,Xu W Y,Yang S F. 2004. Generation mechanisms of ULF electromagnetic emissions before the ML=7.1 earthquake at Hotan of Xinjiang[J]. Chinese Journal of Geophysics,47(5):832–837 (in Chinese).
    [2]
    Feng Z S,Li Q,Lu J,Li H Y,Ju H H,Sun H J,Yang F X,Zhang Y. 2010. The seismic ULF geomagnetic reliable information exaction based on fluxgate magnetometer data of second value[J]. South China Journal of Seismology,30(2):1–7 (in Chinese).
    [3]
    Feng L L,Feng Z S,Fan W J,Guan Y L, He M Q,Li X, He C,Liao X F,Aisa Y,Yuan W X,Li S. 2021. Spatio-temporal variation characteristic of the ultra-low frequency magnetic field prior to strong earthquakes of western Chinese mainland[J]. Acta Seismologica Sinica,43(3):359–375.
    [4]
    Hao J Q,Qian S Q,Gao J T,Zhou J G,Zhu T. 2003. ULF electric and magnetic anomalies accompanying the cracking of rock sample[J]. Acta Seismologica Sinica,25(1):102–111 (in Chinese).
    [5]
    He C,Feng Z S. 2017. Application of polarization method to geomagnetic data from the station Chengdu[J]. Acta Seismologica Sinica,39(4):558–564 (in Chinese).
    [6]
    He M Q,Feng L L,Fan W J,Zhang G X. 2019. The polarization characteristics of geomagnetic vertical intensity before earthquakes of Jiuzhaigou 7.0 and Jinghe 6.6[J]. Recent Developments in World Seismology,(8):71–72 (in Chinese).
    [7]
    Li Q,Yang X,Cai S P. 2015. Case study of applying polarization method to geomagnetic array data[J]. Technology for Earthquake Disaster Prevention,10(2):412–417 (in Chinese).
    [8]
    Liao X F,Feng L L,Qi Y P,Li X. 2019. Application of geomagnetic polarization method in the Alashan M5.0 earthquake[J]. Earthquake,39(4):127–135 (in Chinese).
    [9]
    Su W G,Wang P L,Feng L L,Ma Z,Zhao Y H. 2020. Evolution characteristics of precursory anomalies before the MS6.4 Menyuan,Qinghai,earthquake in 2016[J]. Acta Seismologica Sinica,42(1):24–33 (in Chinese).
    [10]
    Xie T,Liu J,Lu J,Li M,Yao L,Wang Y L,Yu C. 2018. Retrospective analysis on electromagnetic anomalies observed by ground fixed station before the 2008 Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,61(5):1922–1937 (in Chinese).
    [11]
    Yao X Y,Feng Z S. 2018. Review on the recent development of analysis methods on magnetic disturbance associated with earthquakes[J]. Progress in Geophysics,33(2):511–520 (in Chinese).
    [12]
    Zhang J G. 2017. Research on Anomaly Characteristics of Electromagnetic Radiation Signal and Mechanism before Strong Earthquakes[D]. Hefei: University of Science and Technology of China: 13–15 (in Chinese).
    [13]
    Space Environment Prediction Center, Center Space Science and Applied Reaserch, Chinese Academy of Sciences. 2020. Station K indices[EB/OL]. [2020-06-12]. http://www.sepc.ac.cn/KIndex.php (in Chinese).
    [14]
    Bernardi A,Fraser-Smith A C,McGill P R,Villard O G. 1991. ULF magnetic field measurements near the epicenter of the MS7.1 Loma Prieta earthquake[J]. Phys Earth Planet Inter,68(1/2):45–63.
    [15]
    Fraser-Smith A C,Bernardi A,McGill P R,Ladd M E,Helliwell R A,Villard O G. 1990. Low-frequency magnetic field measurements near the epicenter of the MS7.1 Loma Prieta earthquake[J]. Geophys Res Lett,17(9):1465–1468. doi: 10.1029/GL017i009p01465
    [16]
    Hattori K. 2004. ULF geomagnetic changes associated with large earthquakes[J]. Terr Atmos Ocean Sci,15(3):329–360. doi: 10.3319/TAO.2004.15.3.329(EP)
    [17]
    Hattori K,Han P,Yoshino C,Febriani F,Yamaguchi H,Chen C H. 2013. Investigation of ULF seismo-magnetic phenomena in Kanto,Japan during 2000−2010:Case studies and statistical studies[J]. Surv Geophys,34(3):293–316. doi: 10.1007/s10712-012-9215-x
    [18]
    Hayakawa M,Kawate R,Molchanov O A,Yumoto K. 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993[J]. Geophys Res Lett,23(3):241–244. doi: 10.1029/95GL02863
    [19]
    Hayakawa M,Itoh T,Hattori K,Yumoto K. 2000. ULF electromagnetic precursors for an earthquake at Biak,Indonesia on February 17,1996[J]. Geophys Res Lett,27(10):1531–1534. doi: 10.1029/1999GL005432
    [20]
    Huang Q H. 2002. One possible generation mechanism of co-seismic electric signals[J]. Proc Jpn Acad,Ser B,78(7):173–178. doi: 10.2183/pjab.78.173
    [21]
    Kopytenko Y A,Matiashvili T G,Voronov P M,Kopytenko E A,Molchanov O A. 1993. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity,based on geomagnetic pulsations data at Dusheti and Vardzia observatories[J]. Phys Earth Planet Inter,77(1/2):85–95.
    [22]
    Molchanov O A,Hayakawa M. 1995. Generation of ULF electromagnetic emissions by microfracturing[J]. Geophys Res Lett,22(22):3091–3094. doi: 10.1029/95GL00781
    [23]
    Molchanov O A,Mazhaeva O A,Protopopov M L,et al. 1992. Electromagnetic VLF radiation of seismic origin observed on the interkosmos-24 satellite[J]. Geomagnetizm I Aeronomiya,32(6):128–137.
    [24]
    Molchanov O,Schekotov A,Fedorov E,Belyaev G,Gordeev E. 2003. Preseismic ULF electromagnetic effect from observation at Kamchatka[J]. Nat Hazards Earth Syst Sci,3(3/4):203–209. doi: 10.5194/nhess-3-203-2003
    [25]
    Prattes G,Schwingenschuh K,Eichelberger H U,Magnes W,Boudjada M,Stachel M,Vellante M,Wesztergom V,Nenovski P. 2008. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005[J]. Nat Hazards Earth Syst Sci,8(3):501–507. doi: 10.5194/nhess-8-501-2008
    [26]
    Ren H X,Chen X F,Huang Q H. 2012. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media[J]. Geophys J Int,188(3):925–944. doi: 10.1111/j.1365-246X.2011.05309.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (315) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return