Liu Y,Ren Y F,Wen R Z,Wang H W. 2022. Uncertainties in probabilistic tsunami hazard assessment. Acta Seismologica Sinica44(4):688−699. DOI: 10.11939/jass.20210044
Citation: Liu Y,Ren Y F,Wen R Z,Wang H W. 2022. Uncertainties in probabilistic tsunami hazard assessment. Acta Seismologica Sinica44(4):688−699. DOI: 10.11939/jass.20210044

Uncertainties in probabilistic tsunami hazard assessment

More Information
  • Received Date: April 20, 2021
  • Revised Date: May 24, 2021
  • Available Online: July 14, 2022
  • Published Date: July 14, 2022
  • Regarding the extensive uncertainties result from in the probabilistic tsunami hazard analysis (PTHA), this study summarized the sources of these uncertainties and classified their categories. The methodologies based on logic-tree and event-tree approaches were proposed to quantify uncertainties in PTHA. And then, taking the potential tsunami source (PTS) of Manila trench as an example, both methodologies were performed to illustrate their effectiveness on quantifing the uncertainties derived from the magnitude upper-limit and rupture plane parameters. Some conclusions were drawn as follows: The variability of magnitude upper-limits of PTS affects remarkably the result of PTHA, suggesting a particular consideration that could be quantified effectively using the logic-tree approach. The dip, rake and rupture areas of PTS affect moderately the result of PTHA. The guarantee rate of tsunami hazard given by PTHA will be considerably higher than 20% and slightly lower than 80% when the uncertainties are quantified by an event-tree approach, meeting the requirements of tsunami-resilient structural design.
  • 洪明理,任鲁川,霍振香. 2014. 基于E-FAST法分析海啸波高对潜在海啸源参数的敏感性[J]. 地震学报,36(2):252–260. doi: 10.3969/j.issn.0253-3782.2014.02.010
    Hong M L,Ren L C,Huo Z X. 2014. Sensitivity analysis on maximum tsunami wave heights to the potential tsunami source parameters based on extended FAST method[J]. Acta Seismologica Sinica,36(2):252–260 (in Chinese).
    任鲁川,霍振香,洪明理. 2014. 耦合潜源参数不确定性效应的地震海啸危险性分析:原理与方法[J]. 海洋预报,31(6):7–13. doi: 10.11737/j.issn.1003-0239.2014.06.002
    Ren L C,Huo Z X,Hong M L. 2014. Principle and method of the seismic tsunami hazard analysis coupling uncertainty effect of potential source parameters[J]. Marine Forecasts,31(6):7–13 (in Chinese).
    任叶飞,杨智博,温瑞智,金波. 2015. 地震海啸数值模拟中海洋水深数据的敏感性研究[J]. 自然灾害学报,24(2):15–22. doi: 10.13577/j.jnd.2015.0203
    Ren Y F,Yang Z B,Wen R Z,Jin B. 2015. Bathymetry data:Sensitivity in the numerical simulation of earthquake tsunami[J]. Journal of Natural Disasters,24(2):15–22 (in Chinese).
    王培涛,于福江,原野,闪迪,赵联大. 2016. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报,59(3):1030–1045. doi: 10.6038/cjg20160324
    Wang P T,Yu F J,Yuan Y,Shan D,Zhao L D. 2016. Effects of finite fault rupture models of submarine earthquakes on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysics,59(3):1030–1045 (in Chinese).
    周本刚, 何宏林, 安艳芬. 2011. 琉球海沟、马尼拉海沟地震构造背景及震源参数评估报告[R]. 北京: 中国地震局地质研究所, 中国地震局地球物理研究所, 中国地震局地震预测研究所: 1–2.
    Zhou B G, He H L, An Y F. 2011. Report of the Evaluation of the Seismotectonic Background and Source Parameters in the Ryukyu Trench and Manila Trench[R]. Beijing: Institute of Geology, Institute of Geophysics, Institute of Earthquake Science, China Earthquake Administration: 1–2 (in Chinese).
    Andrews J D, Moss T R. 2002. Reliability and Risk Assessment[M]. 2nd ed. London: Professional Engineering Publishing Limited: 1–2.
    Budnitz R J, Apostolakis G, Boore D M. 1997. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts[R]. Washington D C: Office of Scientific & Technical Information: 2–3.
    Choi B H,Min B I,Pelinovsky E,Tsuji Y,Kim K O. 2012. Comparable analysis of the distribution functions of runup heights of the 1896,1933 and 2011 Japanese Tsunamis in the Sanriku area[J]. Nat Hazards Earth Syst Sci,12(5):1463–1467.
    Delavaud E,Cotton F,Akkar S,Scherbaum F,Danciu L,Beauval C,Drouet S,Douglas J,Basili R,Sandikkaya M A,Segou M,Faccioli E,Theodoulidis N. 2012. Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe[J]. J Seismol,16(3):451–473. doi: 10.1007/s10950-012-9281-z
    Gica E,Teng M H,Liu P L F,Titov V,Zhou H Q. 2007. Sensitivity analysis of source parameters for earthquake-generated distant tsunamis[J]. J Waterw Port Coastal Ocean Eng,133(6):429–441. doi: 10.1061/(ASCE)0733-950X(2007)133:6(429)
    Hoffman F O,Hammonds J S. 1994. Propagation of uncertainty in risk assessments:The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability[J]. Risk Anal,14(5):707–712. doi: 10.1111/j.1539-6924.1994.tb00281.x
    Kulkarni R, Youngs R, Coppersmith K. 1984. Assessment of confidence intervals for results of seismic hazard analysis[C]//Proceedings of the Eighth World Conference on Earthquake Engineering. San Francisco: prentice-Hall: 263–270.
    Li H W,Yuan Y,Xu Z G,Wang Z C,Wang J C,Wang P T,Gao Y,Hou J M,Shan D. 2017. The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the south China sea and adjoining basins[J]. Pure Appl Geophys,174(6):2351–2370.
    Li L L,Switzer A D,Chan C H,Wang Y,Weiss R,Qiu Q. 2016. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment:A case study in the South China Sea[J]. J Geophys Res Solid Earth,121(8):6250–6272. doi: 10.1002/2016JB013111
    McGuire R K. 2004. Seismic Hazard and Risk Analysis[M]. Oakland: Earthquake Engineering Research Institute: 37.
    Necmioğlu Ö,Özel N M. 2014. An earthquake source sensitivity analysis for tsunami propagation in the eastern Mediterranean[J]. Oceanography,27(2):76–85. doi: 10.5670/oceanog.2014.42
    Papazachos B C,Scordilis E M,Panagiotopoulos D G,Papazachos C B,Karakaisis G F. 2004. Global relations between seismic fault parameters and moment magnitude of earthquakes[J]. Bull Geol Soc Greece,36(3):1482–1489. doi: 10.12681/bgsg.16538
    Ren Y F,Wen R Z,Zhang P,Yang Z B,Pan R,Li X J. 2017. Implications of local sources to probabilistic tsunami hazard analysis in South Chinese coastal area[J]. J Earthq Tsunami,11(1):1740001. doi: 10.1142/S1793431117400012
    Sørensen M B,Spada M,Babeyko A,Wiemer S,Grünthal G. 2012. Probabilistic tsunami hazard in the Mediterranean sea[J]. J Geophys Res Solid Earth,117(B1):B01305.
    Thio H K, Wilson R I, Miller K. 2014. Evaluation and application of probabilistic tsunami hazard analysis in California[C]//2014 AGU Fall Meeting. SanFrancisco: American Geophysical Union: NH12A-01.
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 王岩,郭晓燕,夏彩韵,刘硕,陈梓怡. 海城老震区地震序列地震活动性参数综合变化分析. 防灾减灾学报. 2025(02): 10-16 .
    2. 任雪梅,李文君,罗国富. 1970年以来“固原窗”M_L≥3.0地震活动增强现象及震兆意义. 华南地震. 2022(03): 58-64 .
    3. 张琳琳,聂晓红. 2021年3月24日拜城M_S5.4地震前拜城地震窗异常分析. 内陆地震. 2022(04): 297-302 .
    4. 罗恒之,曾宪伟,卫定军,罗国富,司学芸,李新艳. 2017年内蒙古阿拉善左旗5.0级地震震前异常总结. 地震地磁观测与研究. 2020(05): 183-191 .
    5. 张琳琳,敖雪明. 基于Molchan模型的乌恰地震窗预测效能评价. 内陆地震. 2019(01): 8-13 .
    6. 钱蕊,王亮,张志宏,杨士超,夏彩韵. 辽宁海城地震窗开窗指标及效能分析. 防灾减灾学报. 2019(03): 84-91 .
    7. 张琳琳,敖雪明. 新疆天山地震窗口网的进一步研究. 内陆地震. 2018(01): 33-42 .
    8. 王霞,宋美琴. 大同窗地震活动频次和应变能特征. 中国地震. 2017(02): 328-337 .
    9. 张琳琳,敖雪明,聂晓红. 2017年精河6.6级、库车5.7级地震前“库米什地震窗”异常特征分析. 中国地震. 2017(04): 721-727 .
    10. Li Yutong,Zhang Bo,Wang Liang,Li Tongxia. The Precursory Significance of Cumulative Slip of Repeating Earthquake Sequences Prior to Moderately Strong Earthquakes— A Case Study of Four Remarkable Earthquake Sequences of HaichengXiuyan. Earthquake Research in China. 2016(01): 22-32 .
    11. 李宇彤,张博,王亮,李彤霞. 地震序列中重复地震的累积滑动量对后续中强地震的前兆意义——以辽宁海城-岫岩地区4个显著地震序列为例. 中国地震. 2015(02): 235-244 .

    Other cited types(0)

Catalog

    Article views (484) PDF downloads (69) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return