Volume 44 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Liu Y,Ren Y F,Wen R Z,Wang H W. 2022. Uncertainties in probabilistic tsunami hazard assessment. Acta Seismologica Sinica,44(4):688−699 doi: 10.11939/jass.20210044
Citation: Liu Y,Ren Y F,Wen R Z,Wang H W. 2022. Uncertainties in probabilistic tsunami hazard assessment. Acta Seismologica Sinica44(4):688−699 doi: 10.11939/jass.20210044

Uncertainties in probabilistic tsunami hazard assessment

doi: 10.11939/jass.20210044
  • Received Date: 2021-04-21
  • Rev Recd Date: 2021-05-25
  • Available Online: 2022-07-15
  • Publish Date: 2022-07-15
  • Regarding the extensive uncertainties result from in the probabilistic tsunami hazard analysis (PTHA), this study summarized the sources of these uncertainties and classified their categories. The methodologies based on logic-tree and event-tree approaches were proposed to quantify uncertainties in PTHA. And then, taking the potential tsunami source (PTS) of Manila trench as an example, both methodologies were performed to illustrate their effectiveness on quantifing the uncertainties derived from the magnitude upper-limit and rupture plane parameters. Some conclusions were drawn as follows: The variability of magnitude upper-limits of PTS affects remarkably the result of PTHA, suggesting a particular consideration that could be quantified effectively using the logic-tree approach. The dip, rake and rupture areas of PTS affect moderately the result of PTHA. The guarantee rate of tsunami hazard given by PTHA will be considerably higher than 20% and slightly lower than 80% when the uncertainties are quantified by an event-tree approach, meeting the requirements of tsunami-resilient structural design.

     

  • loading
  • [1]
    Hong M L,Ren L C,Huo Z X. 2014. Sensitivity analysis on maximum tsunami wave heights to the potential tsunami source parameters based on extended FAST method[J]. Acta Seismologica Sinica,36(2):252–260 (in Chinese).
    [2]
    Ren L C,Huo Z X,Hong M L. 2014. Principle and method of the seismic tsunami hazard analysis coupling uncertainty effect of potential source parameters[J]. Marine Forecasts,31(6):7–13 (in Chinese).
    [3]
    Ren Y F,Yang Z B,Wen R Z,Jin B. 2015. Bathymetry data:Sensitivity in the numerical simulation of earthquake tsunami[J]. Journal of Natural Disasters,24(2):15–22 (in Chinese).
    [4]
    Wang P T,Yu F J,Yuan Y,Shan D,Zhao L D. 2016. Effects of finite fault rupture models of submarine earthquakes on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysics,59(3):1030–1045 (in Chinese).
    [5]
    Zhou B G, He H L, An Y F. 2011. Report of the Evaluation of the Seismotectonic Background and Source Parameters in the Ryukyu Trench and Manila Trench[R]. Beijing: Institute of Geology, Institute of Geophysics, Institute of Earthquake Science, China Earthquake Administration: 1–2 (in Chinese).
    [6]
    Andrews J D, Moss T R. 2002. Reliability and Risk Assessment[M]. 2nd ed. London: Professional Engineering Publishing Limited: 1–2.
    [7]
    Budnitz R J, Apostolakis G, Boore D M. 1997. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts[R]. Washington D C: Office of Scientific & Technical Information: 2–3.
    [8]
    Choi B H,Min B I,Pelinovsky E,Tsuji Y,Kim K O. 2012. Comparable analysis of the distribution functions of runup heights of the 1896,1933 and 2011 Japanese Tsunamis in the Sanriku area[J]. Nat Hazards Earth Syst Sci,12(5):1463–1467.
    [9]
    Delavaud E,Cotton F,Akkar S,Scherbaum F,Danciu L,Beauval C,Drouet S,Douglas J,Basili R,Sandikkaya M A,Segou M,Faccioli E,Theodoulidis N. 2012. Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe[J]. J Seismol,16(3):451–473. doi: 10.1007/s10950-012-9281-z
    [10]
    Gica E,Teng M H,Liu P L F,Titov V,Zhou H Q. 2007. Sensitivity analysis of source parameters for earthquake-generated distant tsunamis[J]. J Waterw Port Coastal Ocean Eng,133(6):429–441. doi: 10.1061/(ASCE)0733-950X(2007)133:6(429)
    [11]
    Hoffman F O,Hammonds J S. 1994. Propagation of uncertainty in risk assessments:The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability[J]. Risk Anal,14(5):707–712. doi: 10.1111/j.1539-6924.1994.tb00281.x
    [12]
    Kulkarni R, Youngs R, Coppersmith K. 1984. Assessment of confidence intervals for results of seismic hazard analysis[C]//Proceedings of the Eighth World Conference on Earthquake Engineering. San Francisco: prentice-Hall: 263–270.
    [13]
    Li H W,Yuan Y,Xu Z G,Wang Z C,Wang J C,Wang P T,Gao Y,Hou J M,Shan D. 2017. The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the south China sea and adjoining basins[J]. Pure Appl Geophys,174(6):2351–2370.
    [14]
    Li L L,Switzer A D,Chan C H,Wang Y,Weiss R,Qiu Q. 2016. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment:A case study in the South China Sea[J]. J Geophys Res Solid Earth,121(8):6250–6272. doi: 10.1002/2016JB013111
    [15]
    McGuire R K. 2004. Seismic Hazard and Risk Analysis[M]. Oakland: Earthquake Engineering Research Institute: 37.
    [16]
    Necmioğlu Ö,Özel N M. 2014. An earthquake source sensitivity analysis for tsunami propagation in the eastern Mediterranean[J]. Oceanography,27(2):76–85. doi: 10.5670/oceanog.2014.42
    [17]
    Papazachos B C,Scordilis E M,Panagiotopoulos D G,Papazachos C B,Karakaisis G F. 2004. Global relations between seismic fault parameters and moment magnitude of earthquakes[J]. Bull Geol Soc Greece,36(3):1482–1489. doi: 10.12681/bgsg.16538
    [18]
    Ren Y F,Wen R Z,Zhang P,Yang Z B,Pan R,Li X J. 2017. Implications of local sources to probabilistic tsunami hazard analysis in South Chinese coastal area[J]. J Earthq Tsunami,11(1):1740001. doi: 10.1142/S1793431117400012
    [19]
    Sørensen M B,Spada M,Babeyko A,Wiemer S,Grünthal G. 2012. Probabilistic tsunami hazard in the Mediterranean sea[J]. J Geophys Res Solid Earth,117(B1):B01305.
    [20]
    Thio H K, Wilson R I, Miller K. 2014. Evaluation and application of probabilistic tsunami hazard analysis in California[C]//2014 AGU Fall Meeting. SanFrancisco: American Geophysical Union: NH12A-01.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (125) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return