Volume 44 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Liu T,Dai Z J,Chen S,Fu L. 2022. Earthquake magnitude classification based on deep learning. Acta Seismologica Sinica,44(4):656−664 doi: 10.11939/jass.20210046
Citation: Liu T,Dai Z J,Chen S,Fu L. 2022. Earthquake magnitude classification based on deep learning. Acta Seismologica Sinica44(4):656−664 doi: 10.11939/jass.20210046

Earthquake magnitude classification based on deep learning

doi: 10.11939/jass.20210046
  • Received Date: 2021-04-01
  • Rev Recd Date: 2021-05-31
  • Available Online: 2022-07-14
  • Publish Date: 2022-08-16
  • In order to explore the magnitude information of the seismic acceleration time history recordings, we train a convolutional neural network to classify the seismic recordings based on the magnitude of the earthquakes. Nearly 120 000 earthquake recordings in K-NET and KiK-net are used as samples, and these acceleration time history recordings are used as inputs for model training after information screening and normalization. Taking the magnitude M5.5 as the classification standard, we train a deep learning model of convolutional neural network to classify large and small earthquakes. The results show that the model has an accuracy rate of 93.6% on the training set and 92.3% on the test set, which has a good classification effect. This suggests there are some fundamental differences between large earthquake recordings and small ones. Thus, earthquake magnitude information may be revealed from acceleration time history recordings of earthquakes.

     

  • loading
  • [1]
    Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement[J]. Acta Seismologica Sinica,42(2):163–176 (in Chinese).
    [2]
    Wei Y G,Yang Q L,Wang T T,Jiang C S,Bian Y J. 2019. Earthquake and explosion identification based on Deep Learning residual network model[J]. Acta Seismologica Sinica,41(5):646–657 (in Chinese).
    [3]
    Xie L L,Zhai C H. 2003. Study on the severest real ground motion for seismic design and analysis[J]. Acta Seismologica Sinica,25(3):250–261 (in Chinese).
    [4]
    Zhang Z C,Zhang W. 2016. Discussion on scientific and practical problems of feasibility of earthquake prediction[J]. Acta Seismologica Sinica,38(4):564–579 (in Chinese).
    [5]
    Zhou B W,Fan L P,Zhang L,Li P R,Fang L H. 2020. Earthquake detection using convolutional neural network and its optimization[J]. Acta Seismologica Sinica,42(6):669–683 (in Chinese).
    [6]
    Zhu X W. 2011. The Selection and Scaling of Strong Motion Records[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 4–5 (in Chinese).
    [7]
    Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: Massachusetts Institute of Technology Press: 438–483.
    [8]
    Baker J W,Cornell C A. 2005. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthq Eng Struct Dyn,34(10):1193–1217.
    [9]
    Baker J W,Cornell C A. 2006a. Correlation of response spectral values for multi-component ground motions[J]. Bull Seismol Soc Am,96(1):215–227.
    [10]
    Baker J W,Cornell C A. 2006b. Spectral shape,epsilon and record selection[J]. Earthq Eng Struct Dyn,35(9):1077–1095.
    [11]
    Dysart P S,Pulli J J. 1990. Regional seismic event classification at the NORESS array:Seismological measurements and the use of trained neural networks[J]. Bull Seismol Soc Am,80(6B):1910–1933.
    [12]
    Goulet C A,Haselton C B,Mitrani-Reiser J,Beck J L,Deierlein G,Porter K A,Stewart J P. 2004. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building:From seismic hazard to collapse safety and economic losses[J]. Earthq Eng Struct Dyn,36(13):1973–1997.
    [13]
    Goulet C. 2005. Improving the Characterization of Seismic Hazard for Performance-Based Earthquake Engineering Design[D]. Los Angeles, California: Environmental and Civil Engineering, University of California: 246–268.
    [14]
    Goulet C A, Haselton C B, Mitrani-Reiser J, Deierlein G, Stewart J P, Taciroglu E. 2006. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building: Part I: Ground motion selection and structural collapse simulation[C]//8th National Conference on Earthquake Engineering (8NCEE). San Francisco, California: Earthquake Engineering Research Institute: 456–489.
    [15]
    Huang L Q,Li J,Hao H,Li X B. 2018. Micro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learning[J]. Tunnel Underground Space Technol,81:265–276. doi: 10.1016/j.tust.2018.07.006
    [16]
    Jordan M I,Mitchell T M. 2015. Machine learning:Trends,perspectives,and prospects[J]. Science,349(6245):255–260. doi: 10.1126/science.aaa8415
    [17]
    Krizhevsky A,Sutskever I,Hinton G E. 2017. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,60(6):84–90.
    [18]
    Murphy K P. 2012. Machine Learning: A Probabilistic Perspective[M]. Cambridge: Massachusetts Institute of Technology Press: 1–16.
    [19]
    Qian Y M,Bi M X,Tan T,Yu K. 2016. Very deep convolutional neural networks for noise robust speech recognition[J]. IEEE/ACM Trans Audio Speech Language Process,24(12):2263–2276.
    [20]
    Ross Z E,Yue Y S,Meier M A,Hauksson E,Heaton T H. 2019. Phaselink:A deep learning approach to seismic phase association[J]. J Geophys Res:Solid Earth,124(1):856–869. doi: 10.1029/2018JB016674
    [21]
    Sainath T N, Mohamed A R, Kingsbury B, Ramabhadran B. 2013. Deep convolutional neural networks for LVCSR[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver B C: IEEE: 8614–8618.
    [22]
    Sercu T, Puhrsch C, Kingsbury B, LeCun Y. 2016. Very deep multilingual convolutional neural networks for LVCSR[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE: 4955–4959.
    [23]
    Tiira T. 1999. Detecting teleseismic events using artificial neural networks[J]. Comput Geosci,25(8):929–938. doi: 10.1016/S0098-3004(99)00056-4
    [24]
    Tóth L. 2013. Convolutional deep rectifier neural nets for phone recognition[C]//Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech. Lyon: International Speech Communication Association (ISCA): 1722–1726.
    [25]
    Ursino A,Langer H,Scarfì L,Di Grazia G,Gresta S. 2001. Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily)[J]. Ann Geophys,44(4):703–722.
    [26]
    Wiszniowski J,Plesiewicz B M,Trojanowski J. 2014. Application of real time recurrent neural network for detection of small natural earthquakes in Poland[J]. Acta Geophys,62(3):469–485. doi: 10.2478/s11600-013-0140-2
    [27]
    Yu D, Xiong W, Droppo J, Stolcke A, Ye G L, Li J Y, Zweig G. 2016. Deep convolutional neural networks with layer-wise context expansion and attention[C]//Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech. Lyon: International Speech Communication Association (ISCA): 17–21.
    [28]
    Zhang G Y,Wang Z Z,Chen Y K. 2018. Deep learning for seismic lithology prediction[J]. Geophys J Int,215(2):1368–1387.
    [29]
    Zhu L J,Peng Z G,McClellan J,Li C Y,Yao D D,Li Z F,Fang L H. 2019. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 MW7.9 Wenchuan earthquake[J]. Phys Earth Planet Inter,293:106261.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (139) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return