Volume 44 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Sun W K,Fu G Y,Zhou X,Xu C Y,Tang H,Dong J,Zhou J C,Yang J Y,Wang W X,Liu T. 2022. Seismic dislocation theory of spherical Earth model and its application. Acta Seismologica Sinica,44(4):711−731 doi: 10.11939/jass.20210134
Citation: Sun W K,Fu G Y,Zhou X,Xu C Y,Tang H,Dong J,Zhou J C,Yang J Y,Wang W X,Liu T. 2022. Seismic dislocation theory of spherical Earth model and its application. Acta Seismologica Sinica44(4):711−731 doi: 10.11939/jass.20210134

Seismic dislocation theory of spherical Earth model and its application

doi: 10.11939/jass.20210134
  • Received Date: 2021-08-10
  • Rev Recd Date: 2021-12-08
  • Available Online: 2022-04-20
  • Publish Date: 2022-08-16
  • Seismic dislocation theory is the theory of studying the relationship between seismic fault slip and geophysical field change, and also it is the link between the source mechanism, the internal structure of the Earth, earthquake forecasting and other basic geophysical problems and geodetic-geophysical observation. The widely used dislocation theory of the semi-infinite medium model, due to the limitation of its geometric attribute, will riskily result in a certain degree of oversight and even fault in the application of seismic deformation and geodynamics analysis. In addition, modern geodesy technology can accurately observe seismic deformation on global and regional scales, and a suitable seismic dislocation theory born for global seismic deformation study is urgently required. For this purpose, our team has developed a new system of seismic dislocation theory based on the spherical Earth model through many years of systematic research. The establishment of such theory has promoted the study of global seismic deformation and geodynamic process, and expanded the study of earthquake-induced global geodynamic changes. This informative article briefly introduces the domestic development and application of seismic dislocation theory of spherical Earth model. The first section introduces the dislocation theory of elastic spherical Earth model, three-dimensional inhomogeneous Earth model and viscoelastic Earth model. The second section introduces the relevant applications of the dislocation theory of spherical Earth model in geodynamic change, fault and underground structure inversion and others in seismological geodesy. The seismic dislocation theory of the spherical Earth model has promoted the study of global seismic deformation and geodynamic changes. It is one of the important theoretical advances in the field of geophysics in recent years.

     

  • loading
  • [1]
    Chen F,Liu T,Fu G Y,She Y W. 2020. Variation of the mantle viscosity around the Tohoku-Oki MW9.0 earthquake revealed by post-seismic GPS data[J]. Chinese Journal of Geophysics,63(6):2210–2220 (in Chinese).
    [2]
    Chen J Y. 2003. On the development of modern geodesy[J]. Science of Surveying and Mapping,28(2):1–5 (in Chinese).
    [3]
    Chen Y T, Lin B H, Lin Z Y, Li Z Y. 1975. The focal mechanism of the 1966 Hsingtai (邢台) earthquake as inferred from the ground deformation observations[J]. Acta Geophysica Sinica, 18(3): 164-182 (in Chinese).
    [4]
    Chen Y T, Lin B H, Wang X H, Huang L R, Liu M L. 1979. A dislocation model of the Tangshan (唐山) earthquake of 1976 from the inversion of geodetic data [J]. Acta Geophysica Sinica, 22(3): 201-217 (in Chinese).
    [5]
    Fu G Y,Sun W K. 2012a. Effects of earth’s lateral heterogeneity on co-seismic gravity changes at deformed earth surface and space-fixed point[J]. Chinese Journal of Geophysics,55(8):2728–2746 (in Chinese).
    [6]
    Fu G Y,Sun W K. 2012b. Overall design and specific structures of the computing codes for coseismic deformations on a layered spherical earth[J]. Earthquake,32(2):73–87 (in Chinese).
    [7]
    Hu M C. 2000. Modern geodesy[J]. Bulletin of Surveying and Mapping,(5):3 (in Chinese).
    [8]
    Li J C,Ning J S,Chao D B,Jiang W P. 2006. The applications and progress of satellite altimetry in geodesy[J]. Science of Surveying and Mapping,31(6):19–23 (in Chinese).
    [9]
    Liang M,Wang W X,Zhang J. 2018. Post-seismic deformation mechanism of the MW9.0 Tohoku-Oki earthquake detected by GPS and GRACE observations[J]. Chinese Journal of Geophysics,61(7):2691–2704 (in Chinese).
    [10]
    Lin X G,Sun W K. 2014. Effects of topography and local geological structure on computing co-seismic deformation:A case study of the 2011 Japan Tohoku earthquake (MW9.0)[J]. Chinese Journal of Geophysics,57(8):2530–2540 (in Chinese).
    [11]
    Liu T,Fu G Y,Zhou X,Su X N. 2017. Mechanism of post-seismic deformations following the 2011 Tohoku-Oki MW9.0 earthquake and general structure of lithosphere around the source[J]. Chinese Journal of Geophysics,60(9):3406–3417 (in Chinese).
    [12]
    Liu T,Fu G Y,Zou Z Y. 2019. Effect of viscoelastic relaxation following the 2004 Sumatra earthquake on horizontal crustal movement in South China[J]. Earthquake,39(2):37–45 (in Chinese).
    [13]
    Sun W K. 1989. Applications of spatial geodetic in plate structure and crust deformation[J]. Acta Geophysica Sinica,32(3):339–346 (in Chinese).
    [14]
    Sun W K. 2002. Satellite in low orbit (CHAMP,GRACE,GOCE) and high precision earth gravity field:The latest progress of satellite gravity geodesy and its great influence on geoscience[J]. Journal of Geodesy and Geodynamics,22(1):92–100 (in Chinese).
    [15]
    Sun W K. 2012a. Seismic Dislocation Theory[M]. Beijing: Science Press: 14–56 (in Chinese).
    [16]
    Sun W K. 2012b. Application of dislocation theories in seismological study and existing problems[J]. Recent Developments in World Seismology,(6):17 (in Chinese).
    [17]
    Tang H,Sun W K. 2021. Progress and prospect of deformation theory in the viscoelastic earth[J]. Reviews of Geophysics and Planetary Physics,52(1):11–26 (in Chinese).
    [18]
    Wang H S,Li G Y,Xu H Z. 1997. Continuously distributed modes of SNRVEI earth model and their effects[J]. Acta Geophysica Sinica,40(1):78–84 (in Chinese).
    [19]
    Xu H Z,Wang G Y. 1989. Dynamic geodesy:A new discipline for studying the dynamic changes of the earth[J]. Advances in Earth Science,4(4):9–15 (in Chinese).
    [20]
    Yang J Y,Sun W K. 2020. The theory and method of determining dislocation Love number and Green’s function using geodetic data[J]. Chinese Journal of Geophysics,63(8):2912–2923 (in Chinese).
    [21]
    Yao Y B,Yang Y X,Sun H P,Li J C. 2020. Geodesy discipline:Progress and perspective[J]. Acta Geodaetica et Cartographica Sinica,49(10):1243–1251 (in Chinese).
    [22]
    Zhang G Q,Fu G Y,Zhou X,Xu C Y. 2015. Retrieve post-seismic gravity changes induced by Sumatra earthquake (MW9.3) based on the viscoelastic dislocation theory[J]. Chinese Journal of Geophysics,58(5):1654–1665 (in Chinese).
    [23]
    Zhang L,Sun W K. 2022. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics,53(1):35–52 (in Chinese).
    [24]
    Zhou J C,Sun H P,Xu J Q,Cui X M,Chen X D. 2017. Co-seismic change of gravitational potential energy and its tectonic implications:A case study of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2493–2499 (in Chinese).
    [25]
    Zhou S Y,Wu Y,Yao Y S,Du R L. 2008. Research of earthquake geodesy[J]. Journal of Geodesy and Geodynamics,28(6):77–82 (in Chinese).
    [26]
    Zhou S Y,Wu Y,Jiang Z S. 2017. Earthquake geodesy and earthquake prediction:Progress,innovations and problems over fifty years[J]. Journal of Geodesy and Geodynamics,37(6):551–562 (in Chinese).
    [27]
    Zhou X. 2017. Markov Chain Monte Carlo method used to invert for fault slip from geodetic data[J]. Journal of Geodesy and Geodynamics,37(10):996–1002 (in Chinese).
    [28]
    Zhou X,Wang X Y,Shen X H. 2018. Coseismic and interseismic gravity field change along the Main Himalaya Thrust[J]. Journal of Remote Sensing,22(S1):100–113 (in Chinese).
    [29]
    Abidin H Z,Andreas H,Kato T,Ito T,Meilano I,Kimata F,Natawidjaya D H,Harjono H. 2009. Crustal deformation studies in Java (Indonesia) using GPS[J]. J Earthq Tsunami,3(2):77–88. doi: 10.1142/S1793431109000445
    [30]
    Adam D. 2002. Amazing GRACE[J]. Nature,416(6876):10–11. doi: 10.1038/416010a
    [31]
    Aki K. 1964. Study of Love and Rayleigh waves from earthquakes with fault plane solutions or with known faulting. Part 1. A phase difference method based on a new model of earthquake source[J]. Bull Seismol Soc Am,54(2):511–527. doi: 10.1785/BSSA0540020511
    [32]
    Allen R M,Ziv A. 2011. Application of real-time GPS to earthquake early warning[J]. Geophys Res Lett,38(16):L16310.
    [33]
    Alterman Z,Jarosch H,Pekeris C L. 1959. Oscillations of the earth[J]. Proc R Soc Lond A:Math Phys Sci,252(1268):80–95.
    [34]
    Amoruso A,Crescentini L. 2009. Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake,Italy[J]. Geophys Res Lett,36(24):L24306. doi: 10.1029/2009GL041503
    [35]
    Anderson D L. 1974. Earthquakes and the rotation of the Earth[J]. Science,186(4158):49–50. doi: 10.1126/science.186.4158.49
    [36]
    Anderson D L,O’Connell R. 1967. Viscosity of the Earth[J]. Geophys J Int,14(1/2/3/4):287–295.
    [37]
    Argus D F,Peltier W R,Blewitt G,Kreemer C. 2021. The viscosity of the top third of the lower mantle estimated using GPS,GRACE,and relative sea level measurements of glacial isostatic adjustment[J]. J Geophys Res:Solid Earth,126(5):e2020JB021537.
    [38]
    Ben-Menahem A,Toksöz M N. 1962. Source-mechanism from spectra of long-period seismic surface-waves:1. The Mongolian earthquake of December 4,1957[J]. J Geophys Res,67(5):1943–1955. doi: 10.1029/JZ067i005p01943
    [39]
    Ben-Menahem A,Singh S J. 1968. Multipolar elastic fields in a layered half space[J]. Bull Seismol Soc Am,58(5):1519–1572. doi: 10.1785/BSSA0580051519
    [40]
    Beresnev I A. 2003. Uncertainties in finite-fault slip inversions:To what extent to believe?(a critical review)[J]. Bull Seismol Soc Am,93(6):2445–2458. doi: 10.1785/0120020225
    [41]
    Biggs J,Wright T J. 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nat Commun,11(1):3863. doi: 10.1038/s41467-020-17587-6
    [42]
    Bock Y,Melgar D. 2016. Physical applications of GPS geodesy:A review[J]. Rep Prog Phys,79(10):106801. doi: 10.1088/0034-4885/79/10/106801
    [43]
    Braitenberg C. 2018. The deforming and rotating Earth:A review of the 18th International Symposium on Geodynamics and Earth Tide,Trieste 2016[J]. Geod Geodyn,9(3):187–196. doi: 10.1016/j.geog.2018.03.003
    [44]
    Cambiotti G,Barletta V R,Bordoni A,Sabadini R. 2009. A comparative analysis of the solutions for a Maxwell Earth:The role of the advection and buoyancy force[J]. Geophys J Int,176(3):995–1006. doi: 10.1111/j.1365-246X.2008.04034.x
    [45]
    Cambiotti G. 2020. Joint estimate of the coseismic 2011 Tohoku earthquake fault slip and post-seismic viscoelastic relaxation by GRACE data inversion[J]. Geophys J Int,220(2):1012–1022.
    [46]
    Cathles L M. 1975. Viscosity of the Earths Mantle[M]. Princeton: Princeton University Press: 267.
    [47]
    Chao B F. 2003. Geodesy is not just for static measurements any more[J]. Eos,Trans AGU,84(16):145–150.
    [48]
    Chao B F,Gross R S. 1987. Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes[J]. Geophys J Int,91(3):569–596. doi: 10.1111/j.1365-246X.1987.tb01659.x
    [49]
    Chen C H,Yeh T K,Liu J Y,Wang C H,Wen S,Yen H Y,Chang S H. 2011. Surface deformation and seismic rebound:Implications and applications[J]. Surv Geophys,32(3):291–313. doi: 10.1007/s10712-011-9117-3
    [50]
    Cheng H H,Zhang B,Huang L Y,Zhang H,Shi Y L. 2019. Calculating coseismic deformation and stress changes in a heterogeneous ellipsoid earth model[J]. Geophys J Int,216(2):851–858. doi: 10.1093/gji/ggy444
    [51]
    Chinnery M A. 1961. The deformation of the ground around surface faults[J]. Bull Seismol Soc Am,51(3):355–372. doi: 10.1785/BSSA0510030355
    [52]
    Cornelio C,Violay M. 2020. Effect of fluid viscosity on earthquake nucleation[J]. Geophys Res Lett,47(12):e2020GL087854.
    [53]
    Dahlen F A. 1968. The normal modes of a rotating,elliptical Earth[J]. Geophys J Int,16(4):329–367. doi: 10.1111/j.1365-246X.1968.tb00229.x
    [54]
    Dahlen F A. 1974. On the static deformation of an Earth model with a fluid core[J]. Geophys J Int,36(2):461–485. doi: 10.1111/j.1365-246X.1974.tb03649.x
    [55]
    Dahlen F A. 1977. The balance of energy in earthquake faulting[J]. Geophys J Int,48(2):239–261. doi: 10.1111/j.1365-246X.1977.tb01298.x
    [56]
    Dai C L,Shum C K,Wang R J,Wang L,Guo J Y,Shang K,Tapley B. 2014. Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes[J]. Geophys Res Lett,41(6):1929–1936. doi: 10.1002/2013GL059178
    [57]
    Diao F Q,Wang R J,Wang Y B,Xiong X,Walter T R. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth Planet Sci Lett,495:202–212. doi: 10.1016/j.jpgl.2018.05.020
    [58]
    Diao F Q,Xiong X,Wang R J,Walter T R,Wang Y B,Wang K. 2019. Slip rate variation along the Kunlun fault (Tibet):Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophys Res Lett,46(5):2524–2533. doi: 10.1029/2019GL081940
    [59]
    Dong J,Sun W K,Zhou X,Wang R J. 2014. Effects of Earth’s layered structure,gravity and curvature on coseismic deformation[J]. Geophys J Int,199(3):1442–1451. doi: 10.1093/gji/ggu342
    [60]
    Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Inter,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7
    [61]
    Fang M,Hager B H. 1996. The sensitivity of post-glacial sea level to viscosity structure and ice-load history for realistically parameterized viscosity profiles[J]. Geophys Res Lett,23(25):3787–3790. doi: 10.1029/96GL03622
    [62]
    Fernández J,Pepe A,Poland M P,Sigmundsson F. 2017. Volcano geodesy:Recent developments and future challenges[J]. J Volcanol Geoth Res,344:1–12. doi: 10.1016/j.jvolgeores.2017.08.006
    [63]
    Forte A M,Peltier W R,Dziewonski A M. 1991. Inferences of mantle viscosity from tectonic plate velocities[J]. Geophys Res Lett,18(9):1747–1750. doi: 10.1029/91GL01726
    [64]
    Freed A M,Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature,430(6999):548–551. doi: 10.1038/nature02784
    [65]
    Freed A M,Hashima A,Becker T W,Okaya D A,Sato H,Hatanaka Y. 2017. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-Oki,Japan earthquake[J]. Earth Planet Sci Lett,459:279–290. doi: 10.1016/j.jpgl.2016.11.040
    [66]
    Freymueller J T. 2021. GPS, tectonic geodesy[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 558–578.
    [67]
    Fu G Y,Sun W K. 2006. Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (MW9.1)[J]. Earth Planets Space,58(2):149–152. doi: 10.1186/BF03353371
    [68]
    Fu G Y,Sun W K. 2007. Effects of lateral inhomogeneity in a spherical Earth on gravity Earth tides[J]. J Geophys Res:Solid Earth,112(B6):B06409.
    [69]
    Fu G Y,Sun W K. 2008. Surface coseismic gravity changes caused by dislocations in a 3-D heterogeneous earth[J]. Geophys J Int,172(2):479–503. doi: 10.1111/j.1365-246X.2007.03684.x
    [70]
    Fu G Y,Sun W K. 2009. Effects of Earth’s lateral inhomogeneous structures on coseismic gravity changes[J]. Pure Appl Geophys,166(8):1343–1368.
    [71]
    Fu G Y,Sun W K,Fukuda Y,Gao S H. 2010. Coseismic displacements caused by point dislocations in a three-dimensional heterogeneous,spherical earth model[J]. Geophys J Int,183(2):706–726. doi: 10.1111/j.1365-246X.2010.04757.x
    [72]
    Gautam P K,Rajesh S,Kumar N,Dabral C P. 2020. GPS measurements on pre-,co- and post-seismic surface deformation at first multi-parametric geophysical observatory,Ghuttu in Garhwal Himalaya,India[J]. J Geod Sci,10(1):136–144. doi: 10.1515/jogs-2020-0114
    [73]
    Gilbert F,MacDonald G J F. 1960. Free oscillations of the Earth:1. Toroidal oscillations[J]. J Geophys Res,65(2):675–693. doi: 10.1029/JZ065i002p00675
    [74]
    Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
    [75]
    Gilbert F, Backus G E. 1968. Elastic-gravitational vibrations of a radially stratified sphere[G]//Dynamics of Stratified Solids. New York: American Society of Mechanical Engineers: 82–95.
    [76]
    Gilbert F,Dziewonski A M. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,278(1280):187–269.
    [77]
    Giorgi G,Schmidt T D,Trainotti C,Mata-Calvo R,Fuchs C,Hoque M M,Berdermann J,Furthner J,Günther C,Schuldt T,Sanjuan J,Gohlke M,Oswald M,Braxmaier C,Balidakis K,Dick G,Flechtner F,Ge M,Glaser S,König R,Michalak G,Murböck M,Semmling M,Schuh H. 2019. Advanced technologies for satellite navigation and geodesy[J]. Adv Space Res,64(6):1256–1273. doi: 10.1016/j.asr.2019.06.010
    [78]
    Glennie C L,Carter W E,Shrestha R L,Dietrich W E. 2013. Geodetic imaging with airborne LiDAR:The Earth’s surface revealed[J]. Rep Prog Phys,76(8):086801. doi: 10.1088/0034-4885/76/8/086801
    [79]
    Gómez D D,Bevis M,Pan E N,Smalley R. 2017. The influence of gravity on the displacement field produced by fault slip[J]. Geophys Res Lett,44(18):9321–9329. doi: 10.1002/2017GL074113
    [80]
    Han S C,Shum C K,Bevis M,Ji C,Kuo C Y. 2006. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake[J]. Science,313(5787):658–662. doi: 10.1126/science.1128661
    [81]
    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    [82]
    Herring T A,Melbourne T I,Murray M H,Floyd M A,Szeliga W M,King R W,Phillips D A,Puskas C M,Santillan M,Wang L. 2016. Plate boundary observatory and related networks:GPS data analysis methods and geodetic products[J]. Rev Geophys,54(4):759–808. doi: 10.1002/2016RG000529
    [83]
    Hu Y,Wang K L,He J H,Klotz J,Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res:Solid Earth,109:B12403. doi: 10.1029/2004JB003163
    [84]
    Ide S. 2007. Slip inversion[G]//Earthquake Seismology: Treatise on Geophysics Volume 4. Amsterdam: Elsevier: 193–223.
    [85]
    Imanishi Y,Sato T,Higashi T,Sun W K,Okubo S. 2004. A network of superconducting gravimeters detects submicrogal coseismic gravity changes[J]. Science,306(5695):476–478. doi: 10.1126/science.1101875
    [86]
    Israel M,Ben-Menahem A. 1974. Residual displacements and strains due to faulting in real Earth models[J]. Phys Earth Planet Inter,8(1):23–45. doi: 10.1016/0031-9201(74)90107-1
    [87]
    Ito T,Simons M. 2011. Probing asthenospheric density,temperature,and elastic moduli below the western United States[J]. Science,332(6032):947–951. doi: 10.1126/science.1202584
    [88]
    Jiang Z S,Wang M,Wang Y Z,Wu Y Q,Che S,Shen Z K,Bürgmann R,Sun J B,Yang Y L,Liao H,Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 MW6.6 Lushan,China,earthquake and its tectonic implications[J]. Geophys Res Lett,41(2):407–413. doi: 10.1002/2013GL058812
    [89]
    Jovanovich D B,Husseini M I,Chinnery M A. 1974a. Elastic dislocations in a layered half-space: Ⅰ . Basic theory and numerical methods[J]. Geophys J Int,39(2):205–217. doi: 10.1111/j.1365-246X.1974.tb05451.x
    [90]
    Jovanovich D B,Husseini M I,Chinnery M A. 1974b. Elastic dislocations in a layered half-space: Ⅱ . The point source[J]. Geophys J Int,39(2):219–239. doi: 10.1111/j.1365-246X.1974.tb05452.x
    [91]
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    [92]
    Krynski J. 2012. Gravimetry for geodesy and geodynamics-brief historical review[J]. Rep Geod,92(1):69–86.
    [93]
    Larson K M. 2019. Unanticipated uses of the global positioning system[J]. Annu Rev Earth Planet Sci,47(1):19–40. doi: 10.1146/annurev-earth-053018-060203
    [94]
    Li X X,Ge M R,Dai X L,Ren X D,Fritsche M,Wickert J,Schuh H. 2015. Accuracy and reliability of multi-GNSS real-time precise positioning:GPS,GLONASS,BeiDou,and Galileo[J]. J Geod,89(6):607–635. doi: 10.1007/s00190-015-0802-8
    [95]
    Love A E H. 1911. Some Problems of Geodynamics[M]. Cambridge: Cambridge University Press: 102–118.
    [96]
    Ma X Q,Kusznir N J. 1992. 3-D subsurface displacement and strain fields for faults and fault arrays in a layered elastic half-space[J]. Geophys J Int,111(3):542–558. doi: 10.1111/j.1365-246X.1992.tb02111.x
    [97]
    Marchandon M,Hollingsworth J,Radiguet M. 2021. Origin of the shallow slip deficit on a strike slip fault:Influence of elastic structure,topography,data coverage,and noise[J]. Earth Planet Sci Lett,554:116696. doi: 10.1016/j.jpgl.2020.116696
    [98]
    Marotta A M. 2003. Benefits from GOCE within solid Earth geophysics[J]. Space Sci Rev,108:95–104. doi: 10.1023/A:1026273832697
    [99]
    Maruyama T. 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bull Earthq Res Inst Univ Tokyo,42:289–368.
    [100]
    Masterlark T. 2003. Finite element model predictions of static deformation from dislocation sources in a subduction zone:Sensitivities to homogeneous,isotropic,Poisson-solid,and half-space assumptions[J]. J Geophys Res:Solid Earth,108(B11):2540. doi: 10.1029/2002JB002296
    [101]
    Matsuo K,Heki K. 2011. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry[J]. Geophys Res Lett,38(7):L00G12.
    [102]
    Meigs A. 2013. Active tectonics and the LiDAR revolution[J]. Lithosphere,5(2):226–229. doi: 10.1130/RF.L004.1
    [103]
    Melini D,Cannelli V,Piersanti A,Spada G. 2008. Post-seismic rebound of a spherical Earth:New insights from the application of the Post-Widder inversion formula[J]. Geophys J Int,174(2):672–695. doi: 10.1111/j.1365-246X.2008.03847.x
    [104]
    Mindlin R D,Cheng D H. 1950. Nuclei of strain in the semi-infinite solid[J]. J Appl Phys,21(9):926–930. doi: 10.1063/1.1699785
    [105]
    Molodenskiy S M. 1980. The effect of lateral heterogeneities upon the tides[J]. BIM Fevrier,80:4833–4850.
    [106]
    Ni S D,Kanamori H,Helmberger D. 2005. Energy radiation from the Sumatra earthquake[J]. Nature,434(7033):582. doi: 10.1038/434582a
    [107]
    Nur A,Mavko G. 1974. Postseismic viscoelastic rebound[J]. Science,183(4121):204–206. doi: 10.1126/science.183.4121.204
    [108]
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
    [109]
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
    [110]
    Okubo S. 1991. Potential and gravity changes raised by point dislocations[J]. Geophys J Int,105(3):573–586. doi: 10.1111/j.1365-246X.1991.tb00797.x
    [111]
    Okubo S. 1992. Gravity and potential changes due to shear and tensile faults in a half-space[J]. J Geophys Res:Solid Earth,97(B5):7137–7144. doi: 10.1029/92JB00178
    [112]
    Okubo S. 1993. Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric Earth[J]. Geophys J Int,115(3):921–928. doi: 10.1111/j.1365-246X.1993.tb01501.x
    [113]
    Okubo S. 2020. Advances in gravity analyses for studying volcanoes and earthquakes[J]. Proc Jpn Acad Ser B:Phys Biol Sci,96(2):50–69. doi: 10.2183/pjab.96.005
    [114]
    Pan E N. 2019. Green’s functions for geophysics:A review[J]. Rep Prog Phys,82(10):106801. doi: 10.1088/1361-6633/ab1877
    [115]
    Panet I,Mikhailov V,Diament M,Pollitz F,King G,De Viron O,Holschneider M,Biancale R,Lemoine J M. 2007. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity[J]. Geophys J Int,171(1):177–190. doi: 10.1111/j.1365-246X.2007.03525.x
    [116]
    Peltier W R. 2021. Mantle viscosity[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1107–1115.
    [117]
    Pepe A,Calò F. 2017. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements[J]. Appl Sci,7(12):1264. doi: 10.3390/app7121264
    [118]
    Piersanti A,Spada G,Sabadini R,Bonafede M. 1995. Global post-seismic deformation[J]. Geophys J Int,120(3):544–566. doi: 10.1111/j.1365-246X.1995.tb01838.x
    [119]
    Pollitz F F. 1992. Postseismic relaxation theory on the spherical earth[J]. Bull Seismol Soc Am,82(1):422–453.
    [120]
    Pollitz F F. 1996. Coseismic deformation from earthquake faulting on a layered spherical Earth[J]. Geophys J Int,125(1):1–14. doi: 10.1111/j.1365-246X.1996.tb06530.x
    [121]
    Pollitz F F. 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth[J]. J Geophys Res:Solid Earth,102(B8):17921–17941. doi: 10.1029/97JB01277
    [122]
    Press F. 1965. Displacements,strains,and tilts at teleseismic distances[J]. J Geophys Res,70(10):2395–2412. doi: 10.1029/JZ070i010p02395
    [123]
    Reid H F. 1910. Mechanics of the Earthquake, the California Earthquake of April 18, 1906[R]. Washington D C: The State Investigation Commission, Carnegie Institution of Washington: 29–31.
    [124]
    Reilinger R E,Ergintav S,Bürgmann R,McClusky S,Lenk O,Barka A,Gurkan O,Hearn L,Feigl K L,Cakmak R,Aktug B,Ozener H,Töksoz M N. 2000. Coseismic and postseismic fault slip for the 17 August 1999,M=7.5,Izmit,Turkey earthquake[J]. Science,289(5484):1519–1524. doi: 10.1126/science.289.5484.1519
    [125]
    Rolandone F,Dreger D,Murray M,Bürgmann R. 2006. Coseismic slip distribution of the 2003 MW6.6 San Simeon earthquake,California,determined from GPS measurements and seismic waveform data[J]. Geophys Res Lett,33(16):L16315. doi: 10.1029/2006GL027079
    [126]
    Roth F. 1990. Subsurface deformations in a layered elastic half-space[J]. Geophys J Int,103(1):147–155. doi: 10.1111/j.1365-246X.1990.tb01759.x
    [127]
    Rundle J B. 1980. Static elastic-gravitational deformation of a layered half space by point couple sources[J]. J Geophys Res: Solid Earth,85(B10):5355–5363. doi: 10.1029/JB085iB10p05355
    [128]
    Ryder I,Parsons B,Wright T J,Funning G J. 2007. Post-seismic motion following the 1997 Manyi (Tibet) earthquake:InSAR observations and modelling[J]. Geophys J Int,169(3):1009–1027. doi: 10.1111/j.1365-246X.2006.03312.x
    [129]
    Sabadini R,Yuen D A,Boschi E. 1984. The effects of post-seismic motions on the moment of inertia of a stratified viscoelastic earth with an asthenosphere[J]. Geophys J Int,79(3):727–745. doi: 10.1111/j.1365-246X.1984.tb02865.x
    [130]
    Salvi S,Stramondo S,Funning G J,Ferretti A,Sarti F,Mouratidis A. 2012. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sens Environ,120:164–174. doi: 10.1016/j.rse.2011.09.029
    [131]
    Savage J C,Hastie L M. 1969. A dislocation model for the Fairview Peak,Nevada,earthquake[J]. Bull Seismol Soc Am,59(5):1937–1948. doi: 10.1785/BSSA0590051937
    [132]
    Savage J C,Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res,78(5):832–845. doi: 10.1029/JB078i005p00832
    [133]
    Savage J C,Prescott W H. 1978. Asthenosphere readjustment and the earthquake cycle[J]. J Geophys Res:Solid Earth,83(B7):3369–3376. doi: 10.1029/JB083iB07p03369
    [134]
    Savage J C. 1983. A dislocation model of strain accumulation and release at a subduction zone[J]. J Geophys Res:Solid Earth,88(B6):4984–4996. doi: 10.1029/JB088iB06p04984
    [135]
    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature,391(6662):37–42. doi: 10.1038/34097
    [136]
    Segall P,Davis J L. 1997. GPS applications for geodynamics and earthquake studies[J]. Annu Rev Earth Planet Sci,25(1):301–336. doi: 10.1146/annurev.earth.25.1.301
    [137]
    Soldati G,Spada G. 1999. Large earthquakes and Earth rotation:The role of mantle relaxation[J]. Geophys Res Lett,26(7):911–914. doi: 10.1029/1999GL900144
    [138]
    Spaans K,Hooper A. 2016. InSAR processing for volcano monitoring and other near-real time applications[J]. J Geophys Res:Solid Earth,121(4):2947–2960. doi: 10.1002/2015JB012752
    [139]
    Spada G,Sabadini R,Yuen D A,Ricard Y. 1992. Effects on post-glacial rebound from the hard rheology in the transition zone[J]. Geophys J Int,109(3):683–700. doi: 10.1111/j.1365-246X.1992.tb00125.x
    [140]
    Steketee J A. 1958. On Volterra’s dislocations in a semi-infinite elastic medium[J]. Can J Phys,36(2):192–205. doi: 10.1139/p58-024
    [141]
    Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res:Solid Earth,114:B11404.
    [142]
    Sun W K. 1992. Potential and gravity changes caused by dislocations in spherically symmetric Earth models[J]. Bull Earthq Res Inst Univ Tokyo,67(2):89–238.
    [143]
    Sun W K. 2003. Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth:Geoid change[J]. J Geod,77(7/8):381–387.
    [144]
    Sun W K. 2004a. Asymptotic solution of static displacements caused by dislocations in a spherically symmetric Earth[J]. J Geophys Res:Solid Earth,109(B5):B05402.
    [145]
    Sun W K. 2004b. Short note:Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth-gravity change[J]. J Geod,78(1/2):76–81.
    [146]
    Sun W K,Okubo S. 1993. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅰ . Theory for a point dislocation[J]. Geophys J Int,114(3):569–592. doi: 10.1111/j.1365-246X.1993.tb06988.x
    [147]
    Sun W K,Okubo S. 1998. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅱ . Application to a finite fault[J]. Geophys J Int,132(1):79–88.
    [148]
    Sun W K,Okubo S. 2002. Effects of earth’s spherical curvature and radial heterogeneity in dislocation studies:For a point dislocation[J]. Geophys Res Lett,29(12):46-1–46-4.
    [149]
    Sun W K,Okubo S. 2004. Coseismic deformations detectable by satellite gravity missions:A case study of Alaska (1964,2002) and Hokkaido (2003) earthquakes in the spectral domain[J]. J Geophys Res:Solid Earth,109(B4):B04405.
    [150]
    Sun W K,Zhou X. 2012. Coseismic deflection change of the vertical caused by the 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,189(2):937–955. doi: 10.1111/j.1365-246X.2012.05434.x
    [151]
    Sun W K,Dong J. 2013. Relation of dislocation Love numbers and conventional Love numbers and corresponding Green’s functions for a surface rupture in a spherical earth model[J]. Geophys J Int,193(2):717–733. doi: 10.1093/gji/ggt030
    [152]
    Sun W K,Dong J. 2014. Geo-center movement caused by huge earthquakes[J]. J Geodyn,76:1–7. doi: 10.1016/j.jog.2014.02.008
    [153]
    Sun W K,Okubo S,Fu G Y. 2006a. Green’s functions of coseismic strain changes and investigation of effects of Earth’s spherical curvature and radial heterogeneity[J]. Geophys J Int,167(3):1273–1291. doi: 10.1111/j.1365-246X.2006.03089.x
    [154]
    Sun W K,Okubo S,Sugano T. 2006b. Determining dislocation Love numbers using satellite gravity mission observations[J]. Earth Planets Space,58(5):497–503. doi: 10.1186/BF03351946
    [155]
    Sun W K,Okubo S,Fu G Y,Araya A. 2009. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model:Applicable to deformed earth surface and space-fixed point[J]. Geophys J Int,177(3):817–833. doi: 10.1111/j.1365-246X.2009.04113.x
    [156]
    Sun X D,Hartzell S. 2014. Finite-fault slip model of the 2011 MW5.6 Prague,Oklahoma earthquake from regional waveforms[J]. Geophys Res Lett,41(12):4207–4213. doi: 10.1002/2014GL060410
    [157]
    Takeuchi H,Hasegawa Y. 1965. Viscosity distribution within the Earth[J]. Geophys J Int,9(5):503–508. doi: 10.1111/j.1365-246X.1965.tb06321.x
    [158]
    Tanaka Y,Okuno J,Okubo S. 2006. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅰ ):Vertical displacement and gravity variation[J]. Geophys J Int,164(2):273–289. doi: 10.1111/j.1365-246X.2005.02821.x
    [159]
    Tanaka Y,Okuno J,Okubo S. 2007. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅱ ):Horizontal displacement[J]. Geophys J Int,170(3):1031–1052. doi: 10.1111/j.1365-246X.2007.03486.x
    [160]
    Tanaka Y,Klemann V,Fleming K,Martinec Z. 2009. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth[J]. Geophys J Int,176(3):715–739. doi: 10.1111/j.1365-246X.2008.04015.x
    [161]
    Tang H,Sun W K. 2018a. Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere[J]. Geophys J Int,214(1):731–750. doi: 10.1093/gji/ggy174
    [162]
    Tang H,Sun W K. 2018b. Closed-form expressions of seismic deformation in a homogeneous Maxwell earth model[J]. J Geophys Res:Solid Earth,123(7):6033–6051. doi: 10.1029/2018JB015594
    [163]
    Tang H,Sun W K. 2019. New method for computing postseismic deformations in a realistic gravitational viscoelastic earth model[J]. J Geophys Res:Solid Earth,124(5):5060–5080. doi: 10.1029/2019JB017368
    [164]
    Tang H, Dong J, Sun W K. 2020a. An approximate method to simulate post-seismic deformations in a realistic earth model[C]//International Association of Geodesy Symposia. Berlin, Heidelberg: Springer: 1−7.
    [165]
    Tang H,Zhang L,Chang L,Sun W K. 2020b. Optimized approximate inverse Laplace transform for geo-deformation computation in viscoelastic Earth model[J]. Geophys J Int,223(1):444–453. doi: 10.1093/gji/ggaa322
    [166]
    Tapley B D,Watkins M M,Flechtner F,Reigber C,Bettadpur S,Rodell M,Sasgen I,Famiglietti J S,Landerer F W,Chambers D P,Reager J T,Gardner A S,Save H,Ivins E R,Swenson S C,Boening C,Dahle C,Wiese D N,Dobslaw H,Tamisiea M E,Velicogna I. 2019. Contributions of GRACE to understanding climate change[J]. Nat Climate Change,9(5):358–369. doi: 10.1038/s41558-019-0456-2
    [167]
    Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. J Appl Phys,21(2):89–93. doi: 10.1063/1.1699629
    [168]
    Tian Z,Freymueller J T,Yang Z Q. 2021. Postseismic deformation due to the 2012 MW7.8 Haida Gwaii and 2013 MW7.5 Craig earthquakes and its implications for regional rheological structure[J]. J Geophys Res:Solid Earth,126:e2020JB020197.
    [169]
    Valsa J,Brančik L. 1998. Approximate formulae for numerical inversion of Laplace transforms[J]. Int J Numer Model:Electron Netw Dev Fields,11(3):153–166. doi: 10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C
    [170]
    Van Camp M,de Viron O,Watlet A,Meurers B,Francis O,Caudron C. 2017. Geophysics from terrestrial time-variable gravity measurements[J]. Rev Geophys,55(4):938–992. doi: 10.1002/2017RG000566
    [171]
    Vermeersen L L A,Sabadini R,Spada G. 1996. Analytical visco-elastic relaxation models[J]. Geophys Res Lett,23(7):697–700. doi: 10.1029/96GL00620
    [172]
    Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults?[J]. Tectonophysics,644/645:22–39. doi: 10.1016/j.tecto.2015.01.013
    [173]
    Wang H S. 1999. Surface vertical displacements,potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations[J]. Geophys J Int,137(2):429–440.
    [174]
    Wang K L. 2007. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles[G]//The Seismogenic Zone of Subduction Thrust Faults. New York: Columbia University Press: 540−577.
    [175]
    Wang K L,Hu Y,He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature,484(7394):327–332. doi: 10.1038/nature11032
    [176]
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.
    [177]
    Wang R J,Martín F L,Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust:Fortran programs EDGRN/EDCMP[J]. Comput Geosci,29(2):195–207. doi: 10.1016/S0098-3004(02)00111-5
    [178]
    Wang R J,Martín F L,Roth F. 2006. PSGRN/PSCMP:A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci,32(4):527–541. doi: 10.1016/j.cageo.2005.08.006
    [179]
    Wang W X,Shi Y L,Sun W K,Zhang J. 2011. Viscous lithospheric structure beneath Sumatra inferred from post-seismic gravity changes detected by GRACE[J]. Science China Earth Science,54(8):1257–1267. doi: 10.1007/s11430-011-4217-y
    [180]
    Wang W X,Sun W K,Wu Y Q,Gu G H. 2014. Modification of fault slip models of the MW9.0 Tohoku earthquake by far field GPS observations[J]. J Geodyn,75:22–33. doi: 10.1016/j.jog.2014.01.005
    [181]
    Wason H R,Singh S J. 1972. Static deformation of a multilayered sphere by internal sources[J]. Geophys J Int,27(1):1–14. doi: 10.1111/j.1365-246X.1972.tb02342.x
    [182]
    Wdowinski S, Eriksson S. 2009. Geodesy in the 21st century[J]. EOS Trans AGU, 90(18): 153-155.
    [183]
    Weertman J, Weertman J R. 1964. Elementary Dislocation Theory[M]. New York: Macmillan: 1–15.
    [184]
    Weertman J,Weertman J R. 1975. High temperature creep of rock and mantle viscosity[J]. Annu Rev Earth Planet Sci,3(1):293–315. doi: 10.1146/annurev.ea.03.050175.001453
    [185]
    Wiesemeyer H, Nothnagel A. 2021. Very long baseline interferometry[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1902–1907.
    [186]
    Williams C A,Wallace L M. 2015. Effects of material property variations on slip estimates for subduction interface slow-slip events[J]. Geophys Res Lett,42(4):1113–1121. doi: 10.1002/2014GL062505
    [187]
    Xu C Y. 2021. Coseismic changes in the kinetic rotational energy of the Earth from 1976 to 2019[J]. Geophys J Int,224(2):1127–1132.
    [188]
    Xu C Y,Sun W K. 2014. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory[J]. Geophys J Int,199(3):1655–1661. doi: 10.1093/gji/ggu364
    [189]
    Xu C Y,Chao B F. 2015. Seismological versus geodetic reference frames for seismic dislocation:Consistency under momentum conservations[J]. Geophys J Int,200(2):1000–1004. doi: 10.1093/gji/ggu439
    [190]
    Xu C Y,Chao B F. 2017. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory[J]. J Geophys Res:Solid Earth,122(5):4053–4063. doi: 10.1002/2017JB014204
    [191]
    Xu C Y,Chao B F. 2019. Seismic effects on the secular drift of the Earth’s rotational pole[J]. J Geophys Res:Solid Earth,124(6):6092–6100. doi: 10.1029/2018JB017164
    [192]
    Xu C Y,Sun W K,Chao B F. 2014. Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory[J]. J Geophys Res:Solid Earth,119(12):9031–9041. doi: 10.1002/2014JB011328
    [193]
    Xu C Y,Wei D P,Sun W K. 2016. Contribution of coseismic deformations on the current expansion of the Earth[J]. J Geodyn,99:10–15. doi: 10.1016/j.jog.2016.05.001
    [194]
    Xu C Y,Su X N,Liu T,Sun W K. 2017. Geodetic observations of the co- and post-seismic deformation of the 2013 Okhotsk Sea deep-focus earthquake[J]. Geophys J Int,209(3):1924–1933. doi: 10.1093/gji/ggx123
    [195]
    Yabuki T,Matsu’ura M. 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip[J]. Geophys J Int,109(2):363–375. doi: 10.1111/j.1365-246X.1992.tb00102.x
    [196]
    Yamasaki T,Houseman G A. 2012. The crustal viscosity gradient measured from post-seismic deformation:A case study of the 1997 Manyi (Tibet) earthquake[J]. Earth Planet Sci Lett,351/352:105–114. doi: 10.1016/j.jpgl.2012.07.030
    [197]
    Yang J Y,Sun W K. 2020. Determining dislocation Love number of vertical displacement using GPS observations:Case study of 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,222(2):965–977. doi: 10.1093/gji/ggaa163
    [198]
    Yang J Y,Zhou X,Yi S,Sun W K. 2015. Determining dislocation Love numbers using GRACE satellite mission gravity data[J]. Geophys J Int,203(1):257–269. doi: 10.1093/gji/ggv265
    [199]
    Zhou J C,Sun W K,Sun H P,Xu J Q. 2013. Reformulation of co-seismic polar motion excitation and low degree gravity changes:Applied to the 2011 Tohoku-Oki earthquake (MW9.0)[J]. J Geodyn,63:20–26. doi: 10.1016/j.jog.2012.09.004
    [200]
    Zhou J C,Sun W K,Sun H P,Xu J Q,Cui X M. 2014a. Co-seismic change of length of day based on the point dislocation theory for a SNREI Earth[J]. J Geodyn,79:18–22.
    [201]
    Zhou J C,Sun W K,Dong J. 2015. A correction to the article “Geo-center movement caused by huge earthquakes” by Wenke Sun and Jie Dong[J]. J Geodyn,87:67–73. doi: 10.1016/j.jog.2015.02.003
    [202]
    Zhou J C,Sun W K,Jin S G,Sun H P,Xu J Q. 2016. Rotation change in the orientation of the centre-of-figure frame caused by large earthquakes[J]. Geophys J Int,206(2):999–1008. doi: 10.1093/gji/ggw182
    [203]
    Zhou J C,Pan E N,Bevis M. 2019a. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅰ :Analytical dislocation Love numbers[J]. Geophys J Int,217(3):1681–1705. doi: 10.1093/gji/ggz110
    [204]
    Zhou J C,Pan E N,Bevis M. 2019b. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅱ :Accurate Green’s functions[J]. Geophys J Int,219(3):1717–1728. doi: 10.1093/gji/ggz392
    [205]
    Zhou J C,Pan E N,Bevis M. 2020. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅲ :Internal deformation[J]. Geophys J Int,223(1):420–443. doi: 10.1093/gji/ggaa319
    [206]
    Zhou X,Cambiotti G,Sun W,Sabadini R. 2014b. The coseismic slip distribution of a shallow subduction fault constrained by prior information:The example of 2011 Tohoku (MW9.0) megathrust earthquake[J]. Geophys J Int,199(2):981–995. doi: 10.1093/gji/ggu310
    [207]
    Zhou X,Cambiotti G,Sun W K,Sabadini R. 2018. Co-seismic slip distribution of the 2011 Tohoku (MW9.0) earthquake inverted from GPS and space-borne gravimetric data[J]. Earth Planet Phys,2(2):120–138. doi: 10.26464/epp2018013
    [208]
    Zhu X X,Montazeri S,Gisinger C,Hanssen R F,Bamler R. 2016. Geodetic SAR tomography[J]. IEEE Trans Geosci Remote Sens,54(1):18–35. doi: 10.1109/TGRS.2015.2448686
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (245) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return