2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响

蒋子琴 杨莹辉 陈强 徐倩 徐浪 黄小梅

蒋子琴,杨莹辉,陈强,徐倩,徐浪,黄小梅. 2022. 2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响. 地震学报,44(3):452−466 doi: 10.11939/jass.20200140
引用本文: 蒋子琴,杨莹辉,陈强,徐倩,徐浪,黄小梅. 2022. 2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响. 地震学报,44(3):452−466 doi: 10.11939/jass.20200140
Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2022. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica,44(3):452−466 doi: 10.11939/jass.20200140
Citation: Jiang Z Q,Yang Y H,Chen Q,Xu Q,Xu L,Huang X M. 2022. Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake. Acta Seismologica Sinica44(3):452−466 doi: 10.11939/jass.20200140

2017年伊朗MW7.3地震的震后余滑分布及其对2018年MW6.0地震的触发影响

doi: 10.11939/jass.20200140
详细信息
    通讯作者:

    蒋子琴,在读硕士研究生,主要从事InSAR技术在地震灾害中的应用研究,e-mail:jzqswjtu@163.com

  • 中图分类号: P315.72+5;P315.72+7

Afterslip distribution of 2017 Iran MW7.3 earthquake and its triggering effects on the 2018 MW6.0 earthquake

  • 摘要: 收集了覆盖监测区域的Sentinel-1卫星雷达影像,利用短基线集干涉测量技术提取了2017年伊朗萨波尔扎哈布MW7.3地震后283天的地表时序形变,通过二步法反演得到其震后余滑分布,之后采用差分干涉技术获取了2018年发生于同一地区的贾万鲁德MW6.0地震的同震形变场,并将反演所得的发震断层参数作为应力计算的接收断层参数,来分析2017年MW7.3强震及其震后活动对2018年贾万鲁德MW6.0地震的触发影响。结果表明:萨波尔扎哈布地震的震后形变主要由孕震断层面的余滑运动所致,震后283天余滑模型的累积滑移量达到0.7 m;2018年贾万鲁德地震的发震断层走向为355.6°,倾角为89.4°,同震断层破裂以右旋走滑为主,兼具部分正断层运动。本文所得的贾万鲁德地震断层平面上的库仑应力变化表明,2017年MW7.3主震及其震后余滑对2018年MW6.0地震的发生具有一定的触发效应,MW6.0地震的发生可能与区域板块的活动性相关。

     

  • 图  1  2017 年和 2018 年两次伊朗地震震源区的构造背景及余震分布

    Figure  1.  Tectonic settings of the source regions of the two Iran earthquakes in 2017 and 2018 and aftershock distribution

    图  2  2017年萨波尔扎哈布MW7.3地震的震后形变场

    (a) 升轨视线向形变量;(b) 降轨视线向形变量

    Figure  2.  Post-seismic deformation field of the Sarpol Zahab MW7.3 earthquake in 2017

    (a) Ascending LOS deformation;(b) Descending LOS deformation

    图  3  点形变序列(a)及震后余滑的地震矩张量M0和矩震级MW随时间的变化(b)

    Figure  3.  Point deformation sequences (a) and variation of the seismic moment tensor M0 and the moment magnitude MW of the afterslip with post-seismic time (b)

    图  4  2017年萨波尔扎哈布MW7.3地震的震后余滑分布

    Figure  4.  The afterslip distribution of Sarpol Zahab MW7.3 earthquake in 2017

    图  5  2017年萨波尔扎哈布MW7.3地震震后余滑的模拟形变场和残差。(b) 降轨形变场

    Figure  5.  The simulated post-seismic deformation fields and the residuals based on the afterslip of the Sarpol Zahab MW7.3 earthquake in 2017。(b) The descending deformation field

    图  6  2018年贾万鲁德MW6.0地震升轨(上)、降轨(下)的同震形变场及其模拟残差

    (a) 观测形变场;(b) 模拟形变场;(c) 残差

    Figure  6.  Coseismic deformation fields and simulation residuals in ascending (upper) and descending (lower) orbits of the Javanrud MW6.0 earthquake in 2018

    (a) Observed InSAR deformation field;(b) Simulated deformation field;(c) Residual

    图  7  InSAR反演所得的贾万鲁德MW6.0地震的断层滑动模型

    (a) 断层滑动空间分布;(b) 断层平面上的滑动分布,黄色星形代表2018年贾万鲁德MW6.0地震震源在断层面上的投影位置

    Figure  7.  Fault slip model of the Javanrud MW6.0 earthquake constrained by InSAR observations

    (a) 3D view of the fault slip;(b) Slip distribution on the fault plane,where the yellow star represents the projected location of the hypocenter of the 2018 MW6.0 Javanrud earthquake

    图  8  2017年萨波尔扎哈布MW7.3地震及其震后余滑在2018年贾万鲁德MW6.0地震发震断层上触发的库仑应力变化∆CFS

    (a,b) MW7.3地震对 MW6.0地震触发的库仑应力变化∆CFS;(c,d) MW7.3地震的震后余滑对MW6.0地震触发的库仑应力变化∆CFS;(e,f) 本文计算使用的2017年MW7.3地震同震断层模型(Yang et al,2018b)。图中黄色和红色星形分别代表2018年MW6.0和2017年MW7.3地震震源在各自断层面上的投影位置

    Figure  8.  The Coulomb failure stress change ∆CFS on the fault plane of 2018 MW6.0 earthquake triggered by the 2017 MW7.3 earthquake and its afterslip

    (a,b) ∆CFS on the seismogenic fault plane of the MW6.0 earthquake triggered by the MW7.3 earthquake;(c,d) ∆CFS on the fault plane of the MW6.0 earthquake triggered by the MW7.3 earthquake afterslip;(e,f) The coseismic fault of the 2017 MW7.3 earthquake used in the calculation of ∆CFS (Yang et al,2018b)。 The yellow and red stars represent the projected location of the hypocenter of the 2018 MW6.0 and the 2017 MW7.3 events on their fault planes

    图  9  2017年MW7.3 地震的同震及震后断层滑动分布

    Figure  9.  The co- and post-seismic fault slip distribution of the 2017 MW7.3 earthquake

    表  1  Sentinel-1A卫星的SAR影像参数

    Table  1.   SAR image parameters of Sentinel-1A satellite

    轨道方向监测时段影像数量波长/cm飞行角/°入射角/°分辨率/m
    升轨2017-11-23—2018-08-14125.6−9.739.25×20
    降轨2017-11-19—2018-08-22135.6−167.043.95×20
    下载: 导出CSV

    表  2  Sentinel-1B卫星SAR影像参数

    Table  2.   SAR image parameters of the Sentinel-1B satellite

    卫星类型轨道方向获取时间飞行角/°入射角/°垂直基线/m
    震前日期震后日期
    Sentinel-1B升轨2018-08-152018-08-27−12.933.850.6
    Sentinel-1B降轨2018-08-162018-08-28−166.939.2−22.6
    下载: 导出CSV
  • [1] 郝平,傅征祥,田勤俭,刘杰,刘桂萍. 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究[J]. 地震学报,26(1):30–37. doi: 10.3321/j.issn:0253-3782.2004.01.004
    [2] Hao P,Fu Z X,Tian Q J,Liu J,Liu G P. 2004. Large aftershocks triggering by Coulomb failure stress following the 2001 MS=8.1 great Kunlun earthquake[J]. Acta Seismologica Sinica,26(1):30–37 (in Chinese).
    [3] 贺克锋,赵斌,杜瑞林. 2019. 利用长期GPS数据研究2008年汶川地震震后形变[J]. 大地测量与地球动力学,39(2):122–126.
    [4] He K F,Zhao B,Du R L. 2019. Post-seismic deformation associated with the 2008 Wenchuan earthquake by long-term GPS data[J]. Journal of Geodesy and Geodynamics,39(2):122–126 (in Chinese).
    [5] 冀战波,王琼,王海涛,解朝娣. 2014. 2008年新疆于田MS7.3地震对后续地震的完全库仑应力触发作用[J]. 地震学报,36(6):997–1009.
    [6] Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    [7] 李健,詹文欢,朱俊江,孙杰,冯英辞,姜莲婷,郭磊,唐琴琴. 2017. 1990年菲律宾MW7.7级强震对马尼拉俯冲带静态应力触发影响[J]. 海洋地质与第四纪地质,37(6):93–99.
    [8] Li J,Zhan W H,Zhu J J,Sun J,Feng Y C,Jiang L T,Guo L,Tang Q Q. 2017. A preliminary study on static stress triggering effects on Manila subduction zone by the Philippine MW7.7 earthquake 1990[J]. Marine Geology &Quaternary Geology,37(6):93–99 (in Chinese).
    [9] 单斌,李佳航,韩立波,房立华,杨嵩,金笔凯,郑勇,熊熊. 2012. 2010年MS7.1级玉树地震同震库仑应力变化以及对2011年MS5.2级囊谦地震的影响[J]. 地球物理学报,55(9):3028–3042. doi: 10.6038/j.issn.0001-5733.2012.09.021
    [10] Shan B,Li J H,Han L B,Fang L H,Yang S,Jin B K,Zheng Y,Xiong X. 2012. Coseismic Coulomb stress change caused by 2010 MS=7.1 Yushu earthquake and its influence to 2011 MS=5.2 Nangqên earthquake[J]. Chinese Journal of Geophysics,55(9):3028–3042 (in Chinese).
    [11] 万永革,吴忠良,周公威,黄静. 2000. 几次复杂地震中不同破裂事件之间的“应力触发”问题[J]. 地震学报,22(6):568–576. doi: 10.3321/j.issn:0253-3782.2000.06.002
    [12] Wan Y G,Wu Z L,Zhou G W,Huang J. 2000. “Stress triggering” between different rupture events in several earthquakes[J]. Acta Seismologica Sinica,22(6):568–576 (in Chinese).
    [13] 万永革,沈正康,兰从欣. 2005. 兰德斯地震断层面及其附近余震产生的位移场研究[J]. 地震学报,27(2):139–146. doi: 10.3321/j.issn:0253-3782.2005.02.003
    [14] Wan Y G,Shen Z K,Lan C X. 2005. Study on displacement field generated by aftershocks in Landers seismic fault plane and its adjacent areas[J]. Acta Seismologica Sinica,27(2):139–146 (in Chinese).
    [15] 万永革,沈正康,盛书中,徐晓枫. 2009. 2008年汶川大地震对周围断层的影响[J]. 地震学报,31(2):128–139. doi: 10.3321/j.issn:0253-3782.2009.02.002
    [16] Wan Y G,Shen Z K,Sheng S Z,Xu X F. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults[J]. Acta Seismologica Sinica,31(2):128–139 (in Chinese).
    [17] 文磊,张光亚,李曰俊,温志新,张强,赵岩. 2015. 扎格罗斯褶皱冲断带构造变形特征[J]. 地质科学,50(2):653–664. doi: 10.3969/j.issn.0563-5020.2015.02.020
    [18] Wen L,Zhang G Y,Li Y J,Wen Z X,Zhang Q,Zhao Y. 2015. Structure-deformation features of the Zagros fold and thrust belt[J]. Chinese Journal of Geology,50(2):653–664 (in Chinese).
    [19] 杨百存,秦四清,薛雷,张珂. 2018. 2017年伊拉克MW7.3地震的类型界定及其震后趋势分析[J]. 地球物理学报,61(2):616–624. doi: 10.6038/cjg2018L0737
    [20] Yang B C,Qin S Q,Xue L,Zhang K. 2018. Identification of seismic type of 2017 Iraq MW7.3 earthquake and analysis of its post-quake trend[J]. Chinese Journal of Geophysics,61(2):616–624 (in Chinese).
    [21] 张庆云,李永生,张景发. 2020. 2017年伊朗MW7.3地震震源机制反演及三维形变场获取[J]. 武汉大学学报(信息科学版),45(2):196–204.
    [22] Zhang Q Y,Li Y S,Zhang J F. 2020. Focal mechanism inversion and 3D deformation field acquisition of Iran MW7.3 earthquake in 2017[J]. Geomatics and Information Science of Wuhan University,45(2):196–204 (in Chinese).
    [23] Deng J S,Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective[J]. J Geophys Res,102(B5):9859–9886. doi: 10.1029/96JB03897
    [24] European Space Agency. 2014. ASF data search vertex[DB/OL]. [2019-09-20]. https://search.asf.alaska.edu/#/.
    [25] Feng W P,Samsonov S,Almeida R,Yassaghi A,Li J H,Qiu Q,Li P,Zheng W J. 2018. Geodetic constraints of the 2017 MW7.3 Sarpol Zahab,Iran earthquake,and its implications on the structure and mechanics of the northwest Zagros thrust-fold belt[J]. Geophys Res Lett,45(14):6853–6861. doi: 10.1029/2018GL078577
    [26] Guo R M,Zheng Y,Xu J Q,Riaz M S. 2019. Transient viscosity and afterslip of the 2015 MW8.3 Illapel,Chile,earthquake[J]. Bull Seismol Soc Am,109(6):2567–2581. doi: 10.1785/0120190114
    [27] Hatzfeld D,Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and geodynamic implications[J]. Rev Geophys,48(2):RG2005.
    [28] He P,Wen Y M,Xu C J,Chen Y G. 2019. High-quality three-dimensional displacement fields from new-generation SAR imagery:Application to the 2017 Ezgeleh,Iran,earthquake[J]. J Geod,93(4):573–591. doi: 10.1007/s00190-018-1183-6
    [29] Hsu Y J,Simons M,Avouac J P,Galetzka J,Sieh K,Chlieh M,Natawidjaja D,Prawirodirdjo L,Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake,Sumatra[J]. Science,312(5782):1921–1926. doi: 10.1126/science.1126960
    [30] Jahani S,Callot J P,Letouzey J,Frizon de Lamotte D. 2009. The eastern termination of the Zagros fold-and-thrust belt,Iran:Structures,evolution,and relationships between salt plugs,folding,and faulting[J]. Tectonics,28(6):217–234.
    [31] Jónsson S,Segall P,Pedersen R,Björnsson G. 2003. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature,424(6945):179–183. doi: 10.1038/nature01776
    [32] King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
    [33] Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res,109(B2):B02303.
    [34] Lohman R B, Simons M. 2005. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data down sampling[J]. Geochem Geophys Geosyst, 6(1): Q01007.
    [35] Marone C J,Scholtz C H,Bilham R. 1991. On the mechanics of earthquake afterslip[J]. J Geophys Res,96(B5):8441–8452. doi: 10.1029/91JB00275
    [36] Mora O,Mallorqui J J,Broquetas A. 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Trans Geosci Remote Sens,41(10):2243–2253. doi: 10.1109/TGRS.2003.814657
    [37] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
    [38] Peltzer G,Rosen P,Rogez F,Hudnut K. 1998. Poroelastic rebound along the Landers 1992 earthquake surface rupture[J]. J Geophys Res:Solid Earth,103(B12):30131–30145. doi: 10.1029/98JB02302
    [39] Taymaz T, Nilfouroushan F, Yolsal-Çevikbilen S, Eken T. 2018. Co-seismic crustal deformation of the 12 November 2017 MW7.4 Sar-Pol-Zahab (Iran) earthquake: Integration of analysis based on DInSAR and seismological observations[C]//Proceedings of 2018 EGU General Assembly. Vienna, Austria: EGU2018-4186-6.
    [40] USGS. 2017. M7.3: 29 km S of Halabjah, Iraq[EB/OL]. [2020-07-15]. https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg/moment-tensor.
    [41] USGS. 2018. M6.0: 32 km SW of Javanrud, Iran[EB/OL]. [2020-07-15]. https://earthquake.usgs.gov/earthquakes/eventpage/us1000ghda/moment-tensor.
    [42] Yang C S,Han B Q,Zhao C Y,Du J T,Zhang D X,Zhu S N. 2019. Co- and post-seismic deformation mechanisms of the MW7.3 Iran earthquake (2017) revealed by Sentinel-1 InSAR observations[J]. Remote Sens,11(4):418. doi: 10.3390/rs11040418
    [43] Yang Y H,Chen Q,Xu Q,Liu G X,Hu J C. 2018a. Source model and Coulomb stress change of the 2015 MW7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations[J]. J Geod,93(3):333–351.
    [44] Yang Y H,Hu J C,Yassaghi A,Tsai M C,Zare M,Chen Q,Wang Z G,Rajabi A M,Kamranzad F. 2018b. Midcrustal thrusting and vertical deformation partitioning constraint by 2017 MW7.3 Sarpol Zahab earthquake in Zagros mountain belt,Iran[J]. Seismol Res Lett,89(6):2204–2213. doi: 10.1785/0220180022
    [45] Zhao B,Bürgmann R,Wang D,Tan K,Du R,Zhang R. 2017. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the MW7.9 Gorkha,Nepal,earthquake[J]. J Geophys Res:Solid Earth,122(10):8376–8401. doi: 10.1002/2017JB014366
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  242
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回