中美建筑抗震设计规范中工程场地类别的对比和换算关系

周健 李小军 李亚琦 亢川川

周健,李小军,李亚琦,亢川川. 2021. 中美建筑抗震设计规范中工程场地类别的对比和换算关系. 地震学报,43(4):521−532 doi: 10.11939/jass.20200164
引用本文: 周健,李小军,李亚琦,亢川川. 2021. 中美建筑抗震设计规范中工程场地类别的对比和换算关系. 地震学报,43(4):521−532 doi: 10.11939/jass.20200164
Zhou J,Li X J,Li Y Q,Kang C C. 2021. Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions. Acta Seismologica Sinica,43(4):521−532 doi: 10.11939/jass.20200164
Citation: Zhou J,Li X J,Li Y Q,Kang C C. 2021. Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions. Acta Seismologica Sinica43(4):521−532 doi: 10.11939/jass.20200164

中美建筑抗震设计规范中工程场地类别的对比和换算关系

doi: 10.11939/jass.20200164
基金项目: 国家重点研发计划(2017YFC1500400),国家自然科学基金面上项目(U1839202)和中国地震局地球物理研究所基本科研业务费专项(DQJB17T01)共同资助
详细信息
    通讯作者:

    李小军,e-mail:beerli@vip.sina.com

  • 中图分类号: TU435

Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions

  • 摘要: 本文依据分布于全国的6 824个钻孔数据,按照双参数的不同取值,将GB50011—2010《建筑抗震设计规范》(以下简称中国建抗规)的场地类别进一步划分为更加同质的子类,分析了双参数体系对场地分类结果的影响,建立了每个子类与美国《NEHRP对新建建筑和结构物的推荐地震条款》(National Earthquake Hazards Reduction Program Recommended Provisions for Seismic Regulations for New Buildings and Other Structures,以下简称美国建抗规)的场地类别的对应关系,并对比分析中、美建抗规的场地类别差异,在此基础上建立了中国建抗规与美国建抗规场地类别相互转换的概率表达。研究结果表明:用vS20近似表示中国场地分类标准的等效剪切波速并不可靠;中国建抗规中Ⅱ类场地和Ⅲ类场地内部不同子类与美国建抗规中场地类别的对应关系截然不同;中国建抗规中覆盖层厚度有效地区分了浅部波速类似而深部波速不同的场地;中国建抗规的Ⅱ类和Ⅲ类场地主体均对应美国建抗规的D类场地,中国Ⅱ类场地略偏对应美国C类场地,中国Ⅲ类场地略偏对应美国E类场地;中国Ⅳ类场地对应美国E类场地,绝大多数美国C类和D类场地均对应中国Ⅱ类场地,说明中国Ⅱ类场地的范围极宽。

     

  • 图  1  钻孔位置分布

    Figure  1.  Map of borehole locations

    图  2  6 824个钻孔的各子类的D-vse分布

    括号前的编号为本文定义的子类编码,括号内的数字为钻孔落在这个子类中的数量,vSe在500 m/s以上的部分为地面表层波速vS

    Figure  2.  6 824 boreholes plotted on the D-vSe graph

    The codes at left of the parentheses are the sub-classes codes defined in this article, The numbers in the parentheses are the numbers of boreholes belonged to these sub-classes,the ordinate value exceed 500 m/s represents instantaneous velocity at the surface layer instead of vSe

    表  1  美国建抗规的场地分类(除F类外)

    Table  1.   Site classification in the US NEHRP provisions (without class F)

    场地类别VS30/(m·s−1
    A>1500
    B(760,1500]
    C(360,760]
    D(180,360]
    E≤180
    下载: 导出CSV

    表  2  GB50011—2010《建筑抗震设计规范》场地子类划分标准表

    Table  2.   Sub-site classification schedule of the GB 50011—2010 Code for Seismic Design of Building

    Vse/(m·s−101
    1b1c1d1e Ⅱ c1Ⅱ c2Ⅱ d1Ⅱ d2Ⅱ e Ⅲ dⅢ e1Ⅲ e2
    ≤150 D<3 D∈ [3,15] D∈ [15,20) D∈ [20,80) D> 80
    (150,250] D<3 D∈ [3,20) D∈ [20,50] D>50
    (250,500] D<5 D∈ [5,20) D≥20
    (500,800] D=0
    >800 D=0
    注:D为覆盖层厚度,单位m。
    下载: 导出CSV

    表  3  Dai等(2013)的外推模型在5 m,10 m和15 m深度位置的回归系数和均方根误差

    Table  3.   The coefficients and RMSEs of extrapolation model (Dai et al,2013) at depth of 5 m,10 m,and 15 m

    深度
    d/m
    回归系数RMSE
    ab
    50.7280.7370.061
    100.7840.7070.042
    150.6160.7740.027
    下载: 导出CSV

    表  4  中国建抗规的场地子类与美国建抗规范场地类别的对应关系

    Table  4.   The relation between sub-classes in the Chinese code for seismic design of building and classes in the US NEHRP code

    场地子类子类
    孔数
    子孔
    占比
    vS30
    孔数
    A类场地 B类场地 C类场地 D类场地 E类场地总比例备注*
    孔数比例 孔数比例 孔数比例 孔数比例 孔数比例
    0 7 0.10% 6 0 0 6 100% 0 0 0 0 0 0 100% 2,15 m;4,10 m
    1b 10 0.15% 0 0 0 0 50.0% 0 50.0% 0 0 0 0 100% VS30
    1c 107 1.57% 27 0 0 5 18.5% 22 81.5% 0 0 0 0 100% 23,15 m
    1d 46 0.67% 6 0 0 1 16.7% 5 83.3% 0 0 0 0 100% 4,15 m
    1e 6 0.09% 3 0 0 1 33.3% 2 66.7% 0 0 0 0 100% 3,5 m
    Ⅱ c1 1415 20.7% 98 0 0 0 0 87 88.8% 11 11.2% 0 0 100% 实测VS30
    Ⅱ c2 1790 26.2% 972 0 0 0 0 111 11.4% 861 88.6% 0 0 100% 实测VS30
    Ⅱ d1 880 12.9% 52 0 0 0 0 24 46.2% 28 53.8% 0 0 100% 实测VS30
    Ⅱ d2 1180 17.3% 907 0 0 0 0 0 0 869 95.8% 38 4.2% 100% 实测VS30
    Ⅱ e 58 0.85% 30 0 0 0 0 1 3.3% 29 96.7% 0 0 100% 25,15 m
    Ⅲ d 838 12.3% 838 0 0 0 0 0 0 758 90.4% 80 9.6% 100% 实测VS30
    Ⅲ e1 19 0.28% 14 0 0 0 0 0 0 14 100% 0 0 100% 13,15 m
    Ⅲ e2 272 3.99% 257 0 0 0 0 0 0 3 1.17% 254 98.8% 100% 实测VS30
    196 2.87% 196 0 0 0 0 0 0 0 0 196 100% 100% 实测VS30
    全部分类 6824 100% 3406 0 13 252 2573 568 100%
    注:备注中数字表示中国建抗规场地子类钻孔应用浅孔估计的vS30数据,逗号前的数字表示采用了估计值的钻孔数,逗号之后的数字表示应用的浅孔最小孔深,为了保证结果的可靠性,只有当估计vS30的上下两倍均方根误差均落在美国建抗规同一场地类别时,此vS30和相应的场地类别才会被采用。
    下载: 导出CSV

    表  5  中国建抗规场地类别与美国建抗规场地类别的换算关系

    Table  5.   The transformation table for converting Chinese code for seismic design of building site classes to the US NEHRP code site classes

    中国场地分类美国场地分类
    ABCDE
    0100.00%
    120.40%79.60%
    35.11%63.97%0.93%
    69.10%30.90%
    100.00%
    下载: 导出CSV

    表  6  美国建抗规场地类别与中国建抗规场地子类的换算关系

    Table  6.   The relation between classes in the US NEHPR code and sub-classes in the Chinese code for seismic design of building

    美国场地分类中国场地分类
    01b1c1d1eⅡ c1Ⅱ c2Ⅱ d1Ⅱ eⅡ d2Ⅲ dⅢ e1Ⅲ e2
    B16.9%12.0%47.8%18.5%4.8%
    C0.3%4.3%1.9%0.2%62.7%10.2%20.3%0.1%
    D3.8%37.9%11.3%1.3%27.0%18.1%0.5%0.1%
    E8.3%13.5%45.2%33.0%
    下载: 导出CSV

    表  7  美国建抗规场地类别与中国建抗规场地类别的换算关系

    Table  7.   The transformation table for converting the US NEHPR code site classes to Chinese code site classes

    美国场地
    分类
    中国场地分类
    01
    B16.88%83.13%
    C 6.72%93.28%
    D81.36%18.64%
    E 8.32%58.70%32.98%
    下载: 导出CSV
  • [1] 地理国情监测云平台. 2015. 全国土地利用数据产品[DB/OL]. [2020-06-16]. http://www.dsac.cn/.
    [2] Geographical Information Monitoring Cloud Platform. 2015. China land use data[DB/OL]. [2020-06-16]. http://www.dsac.cn/ (in Chinese).
    [3] 李广军,赵艳,王文仲,张同伟. 2009. 场地条件对设计反应谱最大值的影响[J]. 工程抗震与加固改造,31(1):114–118. doi: 10.3969/j.issn.1002-8412.2009.01.020
    [4] Li G J,Zhao Y,Wang W Z,Zhang T W. 2009. Analysis to the effect of site condition to the maximum of design response spectra[J]. Earthquake Resistant Engineering and Retrofitting,31(1):114–118 (in Chinese).
    [5] 李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
    [6] Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
    [7] 李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005
    [8] Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
    [9] 刘培玄,刘红帅,赵纪生,刘艳琼. 2015. 基于KiK-net台站的中美场地类别对比分析[J]. 地震工程与工程振动,35(6):42–46.
    [10] Liu P X,Liu H S,Zhao J S,Liu Y Q. 2015. Comparison of site classification between Chinese and American seismic codes based on data of Japanese Kik-net station[J]. Earthquake Engineering and Engineering Dynamics,35(6):42–46 (in Chinese).
    [11] 吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
    [12] Lü H S,Zhao F X. 2007. Site coefficients suitable to china site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
    [13] 苏经宇,李虹. 1996. 场地划分规范方法的比较分析[J]. 工程抗震,(2):43–46.
    [14] Su J Y,Li H. 1996. Comparison and analysis of site classification methods in seismic design codes provisions[J]. Seismic Fortification Engineering,(2):43–46 (in Chinese).
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2005. GB17741—2005 工程场地地震安全性评价[S]. 北京: 中国标准出版社: 5.
    [16] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2005. GB 17741—2005 Evaluation of Seismic Safety for Engineering Sites[S]. Beijing: Standards Press of China: 5 (in Chinese).
    [17] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 2009. GB 50021—2001岩土工程勘察规范[S]. 北京: 中国建筑工业出版社: 113.
    [18] Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2009. GB50021—2001 Code for Investigation of Geotechnical Engineering [S]. Beijing: China Architecture & Building Press: 113 (in Chinese).
    [19] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–20.
    [20] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2016. GB50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–20 (in Chinese).
    [21] 周锡元, 王广军, 苏经宇. 1990. 场地・地基・设计地震[M]. 北京: 地震出版社: 22–25.
    [22] Zhou X Y, Wang G J, Su J Y. 1990. Site, Foundation, and Design Ground Motion[M]. Beijing: Seismological Press: 22–25(in Chinese).
    [23] 周锡元,樊水荣,苏经宇. 1999. 场地分类和设计反应谱的特征周期:《建筑抗震设计规范》修订简介(八)[J]. 工程抗震,(4):3–8.
    [24] Zhou X Y,Fan S Y,Su J Y. 1999. Site classification and characteristic period of the response spectrum:Introduction of the revised provisions for GB50011—1998Code for Seismic Design of Buildings (8th)[J]. Seismic Fortification Engineering,(4):3–8 (in Chinese).
    [25] American Society of Civil Engineers. 2013. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10)[M]. Youngstown, Ohio: American Society of Civil Engineers: 203–204.
    [26] Boore D M. 2004. Estimating VS30(or NEHRP site classes)from shallow velocity models(depths<30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105
    [27] Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 m[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071
    [28] Borcherdt R D,Glassmoyer G. 1992. On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region,California[J]. Bull Seismol Soc Am,82(2):603–641.
    [29] Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
    [30] Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
    [31] Cadet H,Dural A M. 2009. A shear wave velocity study based on the Kik-net borehole data:A short note[J]. Seismol Res Lett,80(3):440–445. doi: 10.1785/gssrl.80.3.440
    [32] Castellaro S,Mulargia F,Rossi P L. 2008. VS30:Proxy for seismic amplification?[J]. Seismol Res Lett,79(4):540–543. doi: 10.1785/gssrl.79.4.540
    [33] Dai Z J,Li X J,Hou C. 2013. A shear-wave velocity model for VS30 estimation based on a conditional independence property[J]. Bull Seismol Soc Am,103(6):3354–3361. doi: 10.1785/0120130025
    [34] Dobry R,Borcherdt R D,Crouse C B,Idriss I M,Joyner W B,Martin G R,Power M S,Rinne E E,Seed R B. 2000. New site coeffi-cients and site classification system used in recent building seismic code provisions[J]. Earthq Spectra,16(1):41–67. doi: 10.1193/1.1586082
    [35] Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? [J]. Soil Dyn Earthq Eng,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007
    [36] Moss R E S. 2008. Quantifying measurement uncertainty of thirty-meter shear-wave velocity[J]. Bull Seismol Soc Am,98(3):1399–1411. doi: 10.1785/0120070101
    [37] National Earthquake Hazards Reduction Program. 2015. Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2015 edition)[S]. Washington D C: Building Seismic Safety Council: 14.
    [38] Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187. doi: 10.1002/eqe.4290060205
    [39] Scasserra G,Stewart J P,Kayen R E,Lanzo G. 2009. Database for earthquake strong motion studies in Italy[J]. J Earthq Eng,13(6):852–881. doi: 10.1080/13632460802566997
    [40] Seyhan E,Stewart J P. 2014. Semi-Empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
    [41] Thompson E M,Baise L G,Kayen R E. 2007. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments[J]. Soil Dyn Earthq Eng,27(2):144–152. doi: 10.1016/j.soildyn.2006.05.004
    [42] The European Committee for Standardization. 2004. Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 10–12.
    [43] Wang H Y,Wang S Y. 2015. A new method for estimating VS30 from a shallow shear-wave velocity profile (depth<30 m)[J]. Bull Seismol Soc Am,105(3):1359–1370. doi: 10.1785/0120140103
    [44] Wills C J,Petersen M D,Bryant W A,Reichle M,Saucedo G J,Tan S,Taylor G C,Treiman J A. 2000. A site-conditions map for California based on geology and shear-wave velocity[J]. Bull Seismol Soc Am,90(6B):S187–S208. doi: 10.1785/0120000503
    [45] Zhou J,Li X J,Dai Z J,Chen K. 2021. Parametrical model for estimating VS30 from shallow borehole profiles using a database for China[J]. Bull Seismol Soc Am,111(3):1199–1220. doi: 10.1785/0120200178
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  63
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2021-04-15
  • 网络出版日期:  2021-09-08
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回