阿克苏断层氢气浓度动态特征及其映震效能

钟骏 王博 闫玮 马玉川

钟骏,王博,闫玮,马玉川. 2021. 阿克苏断层氢气浓度动态特征及其映震效能. 地震学报,43(5):616−628 doi: 10.11939/jass.20210007
引用本文: 钟骏,王博,闫玮,马玉川. 2021. 阿克苏断层氢气浓度动态特征及其映震效能. 地震学报,43(5):616−628 doi: 10.11939/jass.20210007
Zhong J,Wang B,Yan W,Ma Y C. 2021. Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflection efficiency. Acta Seismologica Sinica,43(5):616−628 doi: 10.11939/jass.20210007
Citation: Zhong J,Wang B,Yan W,Ma Y C. 2021. Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflection efficiency. Acta Seismologica Sinica43(5):616−628 doi: 10.11939/jass.20210007

阿克苏断层氢气浓度动态特征及其映震效能

doi: 10.11939/jass.20210007
基金项目: 中国地震局地震科技星火计划项目(XH19055)和国家重点研发计划(2018YFE0109700)共同资助
详细信息
    通讯作者:

    王博,e-mail:wangbo313@163.com

  • 中图分类号: P315.72+4

Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflection efficiency

  • 摘要: 首先对阿克苏断层氢气浓度观测资料的周期成分进行了时频分析,然后利用线性回归和互相关方法分析了气温、气压与氢气浓度年周期成分的关系,并利用Molchan图表法对阿克苏断层氢气的映震效能进行了定量检验。结果显示:① 阿克苏断层氢气浓度具有较好的年周期和半日周期成分;② 阿克苏断层氢气浓度的年周期动态变化与气温具有很好的正相关性,与气压相关性一般,表明其年周期变化主要受气温影响;③ Molchan图表法检验结果显示阿克苏断层氢气浓度异常对观测点周边中强以上地震的反应较灵敏,映震效果较好。

     

  • 图  1  阿克苏断层氢气观测点地质构造图 (修改自刘海洋等,2020

    Figure  1.  Geological structure of Aksu fault hydrogen observation point (modified from Liu et al,2020

    图  2  阿克苏断层氢观测点(a)及氢气测量装置(b)示意图

    Figure  2.  Diagrams of Aksu fault hydrogen observation point (a) and hydrogen measuring device (b)

    图  3  阿克苏断层氢气浓度、气温、气压随时间的变化

    (a) 2013年11月—2020年6月;(b) 2018年1—3月;(c) 2018年7—9月

    Figure  3.  Variation of fault hydrogen concentration,temperature and atmospheric pressure in Aksu with time

    (a) From November of 2013 to June of 2020;(b) From January of 2018 to March of 2018;(c) From July of 2018 to September of 2018

    图  4  阿克苏断层氢气浓度S变换结果

    (a) 氢气浓度多年周期成分;(b) 氢气浓度短期周期成分;(c) 气压短期周期成分;(d) 氢气浓度48小时观测数据

    Figure  4.  The S-transformation results of fault hydrogen concentration in Aksu

    (a) Periodic component analysis of multi-year hydrogen concentration;(b) Short-term periodic component analysis of hydrogen concentration;(c) Short-term periodic component analysis of atmosphericpressure;(d) 48 hours observation data of hydrogen concentration

    图  5  断层氢气浓度与气压(a)和气温(b)的相关性

    Figure  5.  Correlativity between fault hydrogen concentration and atmospheric pressure (a) and temperature (b)

    图  6  阿克苏断层氢气浓度年周期成分和气温年周期的归一化值(a)及其互相关分析结果(b)

    Figure  6.  Normalization of annual periodic components of hydrogen concentration and temperature in Aksu (a) and their cross-correlation analysis results (b)

    图  7  阿克苏台站与周围地震空间分布

    Figure  7.  Location of Aksu station and spatial distribution of earthquakes in its vicinity

    图  8  阿克苏断层氢气浓度预处理变化曲线(a)、预测效能(b)及Molchan检验结果(c)

    图(a)中红色圆圈代表选取的 15 个地震事件;图(b)中加号为不同预测时间对应的预报效能和概率增益

    Figure  8.  Pretreatment curve (a),prediction efficiency (b) and Molchan error diagramresult (c) of fault hydrogen concentration in Aksu

    图  9  地震能量密度时间序列(a)及其与异常幅值(b)和震级(c)之间的关系 (水位、水温、氡、流量等数据引自Ma et al,2018

    Figure  9.  Time series of seismic energy density (a) and its relationship with anomalous amplitude (b) and magnitude (c). The data of water level,water temperature,radon and flow are from Ma et al2018

    表  1  阿克苏断层氢气浓度异常变化及300 km范围内的地震

    Table  1.   Anomalous variation of fault hydrogen concentration in Aksu and the earthquakes within 300 km

     发震日期
     年-月-日
    MS地点 异常开始时间
     年-月-日
    氢气浓度异常
    幅值/10−6
    震中距/ km异常开始距
    发震时间/d
    2013-12-01 5.3 新疆柯坪 2013-11-30 1.36 138 1
    2014-07-09 5.1 新疆麦盖提 2014-06-20 1.55 257 19
    2014-11-14 5.7 吉尔吉斯斯坦 2014-07-22 1.10 269 115
    2015-01-10 5.0 新疆阿图什 265
    2016-07-19 4.5 新疆阿克苏 2016-05-23 1.37 95 57
    2017-09-16 5.7 新疆库车 2017-08-30 3.19 293 17
    2018-11-04 5.1 新疆阿图什 2018-10-22 1.46 235 13
    2019-10-27 5.0 新疆乌什 2019-08-26 2.24 115 62
    2019-12-05 4.9 新疆拜城 2019-11-29 1.40 141 6
    2020-01-16 5.6 新疆库车 2019-11-29 1.40 287 48
    2020-01-19 6.4 新疆伽师 2019-11-29 1.40 288 51
    2020-02-15 5.0 吉尔吉斯斯坦 2019-11-29 1.40 110 78
    2020-03-23 5.0 新疆拜城 2020-03-10 1.08 106 13
    2020-05-07 4.5 新疆阿克苏 2020-04-12 2.20 63 25
    2020-05-09 5.2 新疆柯坪 2020-04-12 2.20 125 27
    下载: 导出CSV
  • [1] 车用太,刘耀炜,何钄. 2015. 断层带土壤气中H2观测:探索地震短临预报的新途径[J]. 地震,35(4):1–10. doi: 10.3969/j.issn.1000-3274.2015.04.001
    [2] Che Y T,Liu Y W,He L. 2015. Hydrogen monitoring in fault zone soil gas: A new approach to short/immediate earthquake prediction[J]. Earthquake,35(4):1–10 (in Chinese).
    [3] 陈丰. 1996. 氢:地球深部流体的重要源泉[J]. 地学前缘,3(34):72–79.
    [4] Chen F. 1996. Hydrogen: The important source of fluid in earth interior[J]. Earth Science Frontiers,3(34):72–79 (in Chinese).
    [5] 陈建波. 2008. 新疆地震构造特征研究[D]. 兰州: 中国地震局兰州地震研究所: 51.
    [6] Chen J B. 2008. Research on Seismotectonic Features in Xinjiang[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 51 (in Chinese).
    [7] 邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(s1):66–73.
    [8] Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
    [9] 杜建国,刘连柱,康春丽. 1997. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展,12(5):416–421.
    [10] Du J G,Liu L Z,Kang C L. 1997. The role of deep-crust fluids in earthquake activity[J]. Advances in Earth Science,12(5):416–421 (in Chinese).
    [11] 杜建国,宇文欣,李圣强,简春林,朱自强,陈华静,康春丽. 1998. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震,18(2):155–162.
    [12] Du J G,Yuwen X,Li S Q,Jian C L,Zhu Z Q,Chen H J,Kang C L. 1998. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake,18(2):155–162 (in Chinese).
    [13] 杜乐天,陈安福,王驹,黄树桃. 1995. 地球的排氢作用[J]. 矿物岩石地球化学通报,14(3):193–195.
    [14] Du L T,Chen A F,Wang J,Huang S T. 1995. Hydrogen expulsion of the Earth[J]. Bulletin of Mineralogy,Petrology and Geochemistry,14(3):193–195 (in Chinese).
    [15] 范雪芳,刘国俊,黄春玲,何镧,李孝楠. 2014. 山西东郭断层气氢浓度异常调查与研究[J]. 地震研究,37(2):171–177. doi: 10.3969/j.issn.1000-0666.2014.02.001
    [16] Fan X F,Liu G J,Huang C L,He L,Li X N. 2014. Investigation and research of gas hydrogen concentration anomaly of Dongguo fault in Shanxi[J]. Journal of Seismological Research,37(2):171–177 (in Chinese).
    [17] 范雪芳,张磊,李自红,陶京岺. 2016. 断裂带土壤气高精度氢异常分析[J]. 地震地质,38(2):303–315. doi: 10.3969/j.issn.0253-4967.2016.02.006
    [18] Fan X F,Zhang L,Li Z H,Tao J L. 2016. High-accuracy analysis of soil hydrogen anomaly in fault zone[J]. Seismology and Geology,38(2):303–315 (in Chinese).
    [19] 范雪芳,杨芷萌,李宏伟,吴桂娥,韩晓飞. 2020. 断层带土壤H2浓度变化特征及影响因素研究[J]. 地震研究,43(2):302–309. doi: 10.3969/j.issn.1000-0666.2020.02.012
    [20] Fan X F,Yang Z M,Li H W,Wu G E,Han X F. 2020. Research on variation characteristics and influence factors of hydrogen concentration in the soil[J]. Journal of Seismological Research,43(2):302–309 (in Chinese).
    [21] 方震,张彬,李军辉,孙盼盼,汪世仙,缪鹏. 2020. 地热温泉井与土壤逸出气中痕量氢的特征及差异性分析[J]. 地震工程学报,42(3):705–713. doi: 10.3969/j.issn.1000-0844.2020.03.705
    [22] Fang Z,Zhang B,Li J H,Sun P P,Wang S X,Miao P. 2020. Characteristics and difference of trace hydrogen in escape gas from geothermal hot spring well and soil[J]. China Earthquake Engineering Journal,42(3):705–713 (in Chinese).
    [23] 冯先岳. 1985. 论新疆地震地质特征[J]. 地震地质,7(2):35–44.
    [24] Feng X Y. 1985. Seismogeological characteristics of the Xinjiang area[J]. Seismology and Geology,7(2):35–44 (in Chinese).
    [25] 何文渊,李江海,钱祥麟,郑多明. 2002. 塔里木盆地柯坪断隆断裂构造分析[J]. 中国地质,29(1):37–43. doi: 10.3969/j.issn.1000-3657.2002.01.007
    [26] He W Y,Li J H,Qian X L,Zheng D M. 2002. Analysis of fault structures in the Kalpin uplift,Tarim basin[J]. Geology in China,29(1):37–43 (in Chinese).
    [27] 黄瑞芳,孙卫东,丁兴,王玉荣,詹文欢. 2015. 蛇纹石化过程中铁活动性的高温高压实验研究[J]. 岩石学报,31(3):883–890.
    [28] Huang R F,Sun W D,Ding X,Wang Y R,Zhan W H. 2015. Experimental investigation of iron mobility during serpentinization[J]. Acta Petrologica Sinica,31(3):883–890 (in Chinese).
    [29] 蒋长胜,张浪平,韩立波,来贵娟. 2011. 中长期地震危险性概率预测中的统计检验方法I:Molchan图表法[J]. 地震,31(2):106–113. doi: 10.3969/j.issn.1000-3274.2011.02.012
    [30] Jiang C S,Zhang L P,Han L B,Lai G J. 2011. Probabilistic forecasting method of long-term and intermediate-term seismichazardⅠ:Molchan error diagram[J]. Earthquake,31(2):106–113 (in Chinese).
    [31] 蒋凤亮, 李桂如, 王基华, 张培仁, 朱克文. 1989. 地震地球化学[M]. 北京: 地震出版社: 55–57.
    [32] Jiang F L, Li G R, Wang J H, Zhang P R, Zhu K W. 1989. Seismological Geochemistry[M]. Beijing: Seismological Press: 55–57 (in Chinese).
    [33] 刘海洋,赖爱京,冯英,潘振生. 2020. 2017年9月16日库车MS5.7地震前阿克苏西大桥断层氢异常可靠性分析[J]. 内陆地震,34(2):187–195.
    [34] Liu H Y,Lai A J,Feng Y,Pan Z S. 2020. Reliability analysis of hydrogen anomaly in Akesu west bridge fault before Kuche MS5.7 earthquake on September 16th,2017[J]. Inland Earthquake,34(2):187–195 (in Chinese).
    [35] 刘耀炜,施锦,曹玲玲,潘树新. 2000. 水化学参量中短期异常识别方法及效能评价[J]. 地震,20(增刊1):97–106.
    [36] Liu Y W,Shi J,Cao L L,Pan S X. 2000. The discriminant method of medium and short-term anomaly and evaluation of prediction effect of hydrochemical parameters[J]. Earthquake,20(S1):97–106 (in Chinese).
    [37] 邵济安,赵谊,陆永发,唐克东. 2010. 黑龙江省氢气释放与地震及断块构造关系的探讨[J]. 地学前缘,17(5):271–277.
    [38] Shao J A,Zhao Y,Lu Y F,Tang K D. 2010. The relation between H2 release and earthquake and block structure in Heilongjiang Province[J]. Earth Science Frontiers,17(5):271–277 (in Chinese).
    [39] 宋春燕,马瑾,王海涛,张琳琳. 2018. 强震前断裂亚失稳阶段及失稳部位的特征研究:以新疆南天山西段为例[J]. 地球物理学报,61(2):604–615. doi: 10.6038/cjg2018K0259
    [40] Song C Y,Ma J,Wang H T,Zhang L L. 2018. Study on meta-instability stage and instable section of the fault before strong earthquake:Taking western section of southern Tianshan as an example[J]. Chinese Journal of Geophysics,61(2):604–615 (in Chinese).
    [41] 粟启初,Zeller E,Angino E. 1992. 沿断层逸出的氢气对地震的诱发作用[J]. 地震学报,14(2):229–235.
    [42] Su Q C,Zeller E,Angino E. 1992. The effect of hydrogen on earthquake induced by the escape from the fault[J]. Acta Seismologica Sinica,14(2):229–235 (in Chinese).
    [43] 孙小龙,邵志刚,司学芸,向阳,刘冬英. 2017. 断层带土壤氢气浓度测量及其影响因素[J]. 大地测量与地球动力学,37(4):436–440.
    [44] Sun X L,Shao Z G,Si X Y,Xiang Y,Liu D Y. 2017. Soil hydrogen concentration in fault zone:Analysis of correspondinginfluence factors[J]. Journal of Geodesy and Geodynamics,37(4):436–440 (in Chinese).
    [45] 王博,钟骏,王熠熙,陈石. 2018. 南北地震带北段流体资料地震预测效能检验[J]. 地震,38(1):147–156. doi: 10.3969/j.issn.1000-3274.2018.01.014
    [46] Wang B,Zhong J,Wang Y X,Chen S. 2018. Testing the forecast efficiency of underground fluid observation in the north segment of North-South Seismic Belt[J]. Earthquake,38(1):147–156 (in Chinese).
    [47] 王博,周永胜. 2017. 氢气与断层活动及地震的研究进展[J]. 地球物理学进展,32(5):1921–1929. doi: 10.6038/pg20170508
    [48] Wang B,Zhou Y S. 2017. Review:Fault hydrogen mechanism and its interrelation with seismic activity[J]. Progress in Geophy-sics,32(5):1921–1929 (in Chinese).
    [49] 向阳,孙小龙,高小其,朱成英,李娜. 2018. 新疆库尔勒断层氢气浓度的影响因素及其地震预测的潜在效能评价[J]. 中国地震,34(1):48–59. doi: 10.3969/j.issn.1001-4683.2018.01.005
    [50] Xiang Y,Sun X L,Gao X Q,Zhu C Y,Li N. 2018. The influential factors of fault hydrogen concentration and the potential efficiency evaluation of earthquake prediction in Korla,Xinjiang[J]. Earthquake Research in China,34(1):48–59 (in Chinese).
    [51] 张涛,朱成英,向阳. 2016. 阿克苏痕量氢观测资料初步分析[J]. 内陆地震,30(2):162–167.
    [52] Zhang T,Zhu C Y,Xiang Y. 2016. Primary research on observation data of trace amounts of hydrogen in Akesu[J]. Inland Earthquake,30(2):162–167 (in Chinese).
    [53] 张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.
    [54] Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Strong earthquake activities and active-tectonic blocks in mainland China[J]. Science in China:Series D,33(S1):12–20 (in Chinese).
    [55] 周晓成,石宏宇,陈超,曾令华,孙凤霞,李静,陈志,吕超甲,黄丹,杜建国. 2017. 汶川MS8.0地震破裂带土壤气中H2浓度时空变化[J]. 地球科学进展,32(8):818–827. doi: 10.11867/j.issn.1001-8166.2017.08.0818
    [56] Zhou X C,Shi H Y,Chen C,Zeng L H,Sun F X,Li J,Chen Z,Lü C J,Huang D,Du J G. 2017. Spatial-temporal variations of H2 concentration in soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake[J]. Advances in Earth Science,32(8):818–827 (in Chinese).
    [57] Dogan T,Mori T,Tsunomori F,Notsu K. 2007. Soil H2 and CO2 surveys at several active faults in Japan[J]. Pure Appl Geophys,164(12):2449–2463. doi: 10.1007/s00024-007-0277-5
    [58] Fang Z,Liu Y W,Yang D X,Guo L S,Zhang L. 2018. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project (WFSD),holes 2 and 3 in SW China[J]. Geosci J,22(3):453–464. doi: 10.1007/s12303-017-0068-7
    [59] Freund F,Dickinson J T,Cash M. 2002. Hydrogen in rocks:An energy source for deep microbial communities[J]. Astrobiology,2(1):83–92. doi: 10.1089/153110702753621367
    [60] Gold T,Soter S. 1980. The deep earth gas hypothesis[J]. Sci Am,242(6):154–161. doi: 10.1038/scientificamerican0680-154
    [61] Kameda J,Saruwatari K,Tanaka H,Tsunomori F. 2004. Mechanisms of hydrogen generation during the mechanochemical treatment of biotite within D2O media[J]. Earth Planets Space,56(12):1241–1245. doi: 10.1186/BF03353346
    [62] King C Y,Zhang W,Zhang Z C. 2006. Earthquake-induced groundwater and gas changes[J]. Pure Appl Geophys,163(4):633–645. doi: 10.1007/s00024-006-0049-7
    [63] Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006
    [64] Ma Y C,Wang G C,Tao Y C. 2018. Hydrological changes induced by distant earthquakes at the Lujiang well in Anhui,China[J]. Pure Appl Geophys,175(7):2459–2474. doi: 10.1007/s00024-017-1710-z
    [65] McFadden P D,Cook J G,Forster L M. 1999. Decomposition of gear vibration signals by the generalised S transform[J]. Mech Syst Signal Process,13(5):691–707. doi: 10.1006/mssp.1999.1233
    [66] Molchan G M. 1990. Strategies in strong earthquake prediction[J]. Phys Earth Planet Int,61(1/2):84–98. doi: 10.1016/0031-9201(90)90097-H
    [67] Pizzino L,Burrato P,Quattrocchi F,Valensise G. 2004. Geochemical signatures of large active faults:The example of the 5 February 1783,Calabrian earthquake (southern Italy)[J]. J Seismol,8(3):363–380. doi: 10.1023/B:JOSE.0000038455.56343.e7
    [68] Sato M,McGee K A. 1982. Continuous monitoring of hydrogen on the south flank of Mount St. Helens[J]. USGS Professional Paper,1250:209–219.
    [69] Sibson R H. 1977. Fault rocks and fault mechanisms[J]. J Geol Soc,133(3):191–213. doi: 10.1144/gsjgs.133.3.0191
    [70] Sugisaki R. 1984. Relation between hydrogen emission and seismic activities[J]. Pure Appl Geophy,122(2):175–184.
    [71] Wakita H,Nakamura Y,Kita I,Fujii N,Notsu K. 1980. Hydrogen release:New indicator of fault activity[J]. Science,210(4466):188–190. doi: 10.1126/science.210.4466.188
    [72] Wang C Y,Chia Y P,Wang P L,Dreger D. 2009. Role of S waves and Love waves in coseismic permeability enhancement[J]. Geophys Res Lett,36(9):L09404.
    [73] Wang C Y,Manga M. 2010. Hydrologic responses to earthquakes and a general metric[J]. Geofluids,10(1/2):206–216.
    [74] Wang C Y,Manga M,Wang C H,Chen C H. 2012. Transient change in groundwater temperature after earthquakes[J]. Geology,40(2):119–122. doi: 10.1130/G32565.1
    [75] Whiticar M J. 1999. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane[J]. Chem Geol,161(1/2/3):291–314. doi: 10.1016/S0009-2541(99)00092-3
    [76] Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  15
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-17
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-10-11

目录

    /

    返回文章
    返回