地震多级散射波正演模拟方法

张博 吴国忱 李青阳 杨凌云 单俊臻

张博,吴国忱,李青阳,杨凌云,单俊臻. 2022. 地震多级散射波正演模拟方法. 地震学报,44(4):608−618 doi: 10.11939/jass.20210053
引用本文: 张博,吴国忱,李青阳,杨凌云,单俊臻. 2022. 地震多级散射波正演模拟方法. 地震学报,44(4):608−618 doi: 10.11939/jass.20210053
Zhang B,Wu G C,Li Q Y,Yang L Y,Shan J Z. 2022. Forward modeling method of seismic multiple scattered waves. Acta Seismologica Sinica,44(4):608−618 doi: 10.11939/jass.20210053
Citation: Zhang B,Wu G C,Li Q Y,Yang L Y,Shan J Z. 2022. Forward modeling method of seismic multiple scattered waves. Acta Seismologica Sinica44(4):608−618 doi: 10.11939/jass.20210053

地震多级散射波正演模拟方法

doi: 10.11939/jass.20210053
基金项目: 国家自然科学基金(42030103)资助
详细信息
    作者简介:

    张博,在读硕士研究生,主要从事地震散射波正反演方面研究,e-mail:760318758@qq.com

    通讯作者:

    吴国忱,博士,教授,主要从事各向异性介质地震波传播与成像方面研究,e-mail:guochenwu@upc.edu.cn

  • 中图分类号: P315.72+7

Forward modeling method of seismic multiple scattered waves

  • 摘要: 地震波在穿越地下散射体群时会产生多级散射波,分析其地震响应特征,可推断散射体的分布情况和性质。本文从二维标量波动方程出发,结合地震散射理论和波恩近似理论,推导了多级散射波方程。在此基础上,采用高阶有限差分法对双点散射体模型和复杂散射体模型进行数值模拟,分析了多级散射波的传播规律和波场特征,并通过抽取多级散射记录和各级散射记录的单道记录与参考单道记录的对比,验证了本文推导散射波方程的准确性。

     

  • 图  1  地震散射波产生原理示意图

    Figure  1.  Schematic diagram of generating seismic scattered wave

    图  2  多级散射原理示意图

    (a) 一级散射;(b) 二级散射;(c) 三级散射

    Figure  2.  Schematic diagram of multi-order scattering principle

    (a) The first-order scattering;(b) The second-order scattering;(c) The third-order scattering

    图  3  两点强散射体模型

    Figure  3.  A model with two strong scatterers

    图  4  不同级数的散射波波场快照

    (a) 多级散射波;(b) 一级散射波;(c) 二级散射波;(d) 三级散射波

    Figure  4.  Snapshots of scattered wavefields at different orders

    (a) The multi-order scattering;(b)The first-order scattering;(c) The second-order scatterings;(d) The third-order scattering

    图  5  多级散射记录与参考记录第100道的波形对比

    Figure  5.  Comparison of the 100th record of the multi-order scattering records with that of the reference records

    图  6  各级散射记录与参考记录第100道的波形对比

    Figure  6.  Comparison of the 100th record of each scattering records and the reference records

    (a) t=0—1.6 s;(b) t=0.832—0.960 s;(c) t=1.240—1.360 s

    图  7  两点弱散射体模型(a)及多级散射记录与参考记录第 100 道的波形对比(b)

    Figure  7.  A model with two weak scatterers (a) and comparison of the 100th record of the multi-orderscattering records and with that of the reference records (b)

    图  8  各级散射记录与参考记录第100道的波形对比

    Figure  8.  Comparison of the 100th record of each scattering records and the reference records

    (a) t=0—1.6 s;(b) t=0.848—0.944 s;(c) t=1.296—1.318 s

    图  9  复杂散射体模型

    Figure  9.  A model with complex scatterers

    图  10  多级散射记录

    Figure  10.  Multi-order scattering records

    图  11  多级散射记录与参考记录的第100道波形对比

    Figure  11.  Comparison of the 100th record of the multi-order scattering records with that of and the reference records

  • [1] 符力耘,杨慧珠,牟永光. 1998. 非均匀介质散射问题的体积分方程数值解法[J]. 力学学报,30(4):488–494.
    [2] Fu L Y,Yang H J,Mu Y G. 1998. Volume integral equation method for scattering problems of inhomogeneous media[J]. Acta Mechanica Sinica,30(4):488–494 (in Chinese).
    [3] 何燕. 2008. 正交各向异性弹性波高阶有限差分正演模拟研究[D]. 青岛: 中国石油大学(华东): 10–100.
    [4] He Y. 2008. High-Order Finite-Difference Forward Modeling of Elastic-Wave in Orthorhombic Anisotropic Media[D]. Qingdao: China University of Petroleum (East China): 10–100 (in Chinese).
    [5] 雷蕾,印兴耀,张厚淼. 2011. 孔洞性介质地震散射波场正演模拟[J]. 特种油气藏,18(3):64–67. doi: 10.3969/j.issn.1006-6535.2011.03.016
    [6] Lei L,Yin X Y,Zhang H M. 2011. Forward modeling of seismic scattered wave field of porous medium[J]. Special Oil &Gas Reservoirs,18(3):64–67 (in Chinese).
    [7] 李灿苹,刘学伟,王祥春,杨丽. 2005. 地震波的散射理论和散射特征及其应用[J]. 勘探地球物理进展,28(2):81–89.
    [8] Li C P,Liu X W,Wang X C,Yang L. 2005. Seismic wave scattering theory,scattering characteristics and its applications[J]. Progress in Exploration Geophysics,28(2):81–89 (in Chinese).
    [9] 李青阳,吴国忱,梁展源. 2018. 基于PML边界的时间高阶伪谱法弹性波场模拟[J]. 地球物理学进展,33(1):228–235. doi: 10.6038/pg2018BB0014
    [10] Li Q Y,Wu G C,Liang Z Y. 2018. Time domain high-order pseudo spectral method based on PML boundary for elastic wavefield simulation[J]. Progress in Geophysics,33(1):228–235 (in Chinese).
    [11] 梁展源. 2016. 三维标量波全波形反演方法研究[D]. 青岛: 中国石油大学(华东): 15–18.
    [12] Liang Z Y. 2016. The Study on 3D Scalar Wave Full Waveform Inversion Algorithm[D]. Qingdao: China University of Petroleum (East China): 15–18 (in Chinese).
    [13] 刘庆敏. 2007. 高阶差分数值模拟方法研究[D]. 青岛: 中国石油大学(华东): 6–15.
    [14] Liu Q M. 2007. Method Study of High-Order Finite Difference Numerical Modeling[D]. Qingdao: China University of Petroleum (East China): 6–15 (in Chinese).
    [15] 刘铁华. 2012. 地震散射波的高精度数值模拟与振幅分析[J]. 地球物理学报,55(4):1318–1324. doi: 10.6038/j.issn.0001-5733.2012.04.027
    [16] Liu T H. 2012. High precision numerical modeling and dynamic characteristic analysis of seismic scattering wave[J]. Chinese Journal of Geophysics,55(4):1318–1324 (in Chinese).
    [17] 田丽花. 2007. 地震波散射场正演数值模拟[D]. 北京: 中国地质大学(北京): 8–21.
    [18] Tian L H. 2007. Seismic Wave Numerical Value Forward Modeling of the Scattered Field[D]. Beijing: China University of Geosciences (Beijing): 8–21 (in Chinese).
    [19] 吴国忱,秦海旭. 2014. 裂缝介质旋转交错网格正演模拟[J]. 地震学报,36(6):1075–1088.
    [20] Wu G C,Qin H X. 2014. Rotated staggering grid forward modeling in fractured medium[J]. Acta Seismologica Sinica,36(6):1075–1088 (in Chinese).
    [21] 吴国忱,刘杰,李青阳,杨凌云. 2020. 双变参数标量纵波方程正演模拟方法[J]. 地球物理学报,63(4):1607–1621. doi: 10.6038/cjg2020M0548
    [22] Wu G C,Liu J,Li Q Y,Yang L Y. 2020. Forward modeling method of two-variable parameter scalar wave equation[J]. Chinese Journal of Geophysics,63(4):1607–1621 (in Chinese).
    [23] 吴如山, 安艺敬一. 1993. 地震波的散射衰减[M]. 北京: 地震出版社: 1–5.
    [24] Wu R S, Aki K. 1993. Scattering and Attenuation of Seismic Waves[M]. Beijing: Seismological Press: 1–5 (in Chinese).
    [25] 奚先,黄江清. 2018. 散射波场的深度学习反演成像法[J]. 地球物理学进展,33(6):2483–2489. doi: 10.6038/pg2018BB0531
    [26] Xi X,Huang J Q. 2018. Deep learning inversion imaging method for scattered wavefield[J]. Progress in Geophysics,33(6):2483–2489 (in Chinese).
    [27] 奚先,黄江清. 2020. 基于卷积神经网络的地震偏移剖面中散射体的定位和成像[J]. 地球物理学报,63(2):687–714. doi: 10.6038/cjg2020M0490
    [28] Xi X,Huang J Q. 2020. Location and imaging of scatterers in seismic migration profiles based on convolution neural network[J]. Chinese Journal of Geophysics,63(2):687–714 (in Chinese).
    [29] 尹军杰,刘学伟,李文慧. 2005. 地震波散射理论及应用研究综述[J]. 地球物理学进展,20(1):123–134. doi: 10.3969/j.issn.1004-2903.2005.01.024
    [30] Yin J J,Liu X W,Li W H. 2005. The view of seismic wave scattering theory and its applications[J]. Progress in Geophysics,20(1):123–134 (in Chinese).
    [31] 赵茂强. 2010. 多分量VSP/RVSP正演模拟方法研究[D]. 青岛: 中国石油大学(华东): 7–48.
    [32] Zhao M Q. 2010. The Study of Multi-Component VSP/RVSP Seismic Forward Modeling[D]. Qingdao: China University of Petroleum (East China): 7–48 (in Chinese).
    [33] Alkhalifah T, Wu Z D. 2015. Multi-scattering inversion for low model wavenumbers[C]//Proceedings of 2015 SEG Annual Meeting. New Orleans: SEG: R417–R428.
    [34] Alkhalifah T,Wu Z D. 2016. The natural combination of full and image-based waveform inversion[J]. Geophysical Prospecting,64(1):19–30. doi: 10.1111/1365-2478.12264
    [35] Born M, Wolf E. 1999. Principles of Optics[M]. 7th ed. Cambridge: Cambridge University Press: 708–710.
    [36] Eaton D W. 1999. Weak elastic-wave scattering from massive sulfide orebodies[J]. Geophysics,64(1):289–299. doi: 10.1190/1.1444525
    [37] Wu R S, Huang L J. 1992. Scattered field calculation in heterogeneous media using a phase-screen propagator[C]//Proceedings of 1992 SEG Annual Meeting. New Orleans: SEG: 1289–1292.
    [38] Wu R S, Huang L J, Xie X B. 1995. Backscattered wave calculation using the DE wolf approximation and a phase-screen propagator[C]//Proceedings of 1995 SEG Annual Meeting. Houston: SEG: 1293–1296.
  • 加载中
图(11)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  18
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-18
  • 修回日期:  2021-08-14
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-08-16

目录

    /

    返回文章
    返回