H/V spectral ratio characteristics of hidden fault site based on ambient noise test
-
摘要: 基于四川石棉县安顺场隐伏断层穿越区的60余次环境噪声测试,探讨了隐伏断层对环境噪声H/V谱比特征的影响,并且通过研究区所获卓越频率对其覆盖层厚度进行估算,以覆盖层厚度的变化揭示了隐伏断层的行迹。结果显示:① 在排除可能受河流影响引发的高频区后,隐伏断层带处的H/V谱比曲线多呈现高频、低放大系数和多峰值频率等特点;② 覆盖层厚度在部分强风化区和河流高频区存在5—10 m的差异;③ 环境噪声阵列反演所得部分覆盖层厚度变化较大区域与隐伏断层的形迹吻合。Abstract: Ambient noise research has become a hot spot in geological exploration, but the research on ambient noise in alpine and gorge regions of Southwest China is still in its infancy. Based on more than 60 ambient noise tests conducted in the hidden fault crossing area of Anshun field in Shimian county, Sichuan, this paper explores the influence of hidden faults on the H/V spectral ratio characteristics of ambient noise. The results show that after excluding predominant-frequency areas that may be caused by the influence of rivers, the H/V spectral ratio curves are characterized by high frequency, low H/V spectrum ratio, and multi peak frequency on the fault zone. In addition, we estimated the thickness of overburden in this field by analyzing the predominant frequency of this test, and the calculation results of the overburden layer show thickness difference of 5−10 m in some strong weathering areas and high frequency areas of rivers. Moreover some areas with large changes in overburden thickness obtained by ambient noise array inversion are consistent with the trace distribution of the hidden faults. This study attempts to reveal the traces of hidden faults by using the ambient noise method, which provides a new reference basis for the exposure of hidden faults.
-
Key words:
- ambient noise /
- H/V spectral ratio /
- predominant frequency /
- hidden fault
-
图 2 环境噪声现场测试仪器(a)和环境噪声H/V谱比曲线 (b)
图(b)中黑虚线代表标准差,黑实线代表平均谱比曲线,彩色曲线代表每个频带窗口的谱比曲线
Figure 2. Field test instrument of ambient noise (a) and H/V spectral ratio curves of ambient noise (b)
In Fig. (b),black dashed curves stand for standard deviation,the black curve for average spectral ratio,color curve for the spectral ratio of each band window
表 1 浅表层岩土场地分类表
Table 1. Geotechnical site classification of superficial layer
浅层岩土类型 vS/(m·s−1) 覆盖层厚度h/m h<3 3<h<9 9≤h<80 h≥80 基岩 vS>500 Ⅰ − − − 中硬土层 250<vS≤500 Ⅰ Ⅰ Ⅱ Ⅱ 中软土层 125<vS≤250 Ⅰ Ⅱ Ⅱ Ⅲ 软弱土层 vS<125 Ⅰ Ⅱ Ⅲ Ⅳ -
[1] 黄俊阁,罗永红,王运生,朱兴貌,欧剑锋,张跃跃,南凯. 2020. 基于环境噪声测试表征斜坡地震动响应:以自贡西山斜坡为例[J]. 成都理工大学学报(自然科学版),47(1):16–27. doi: 10.3969/j.issn.1671-9727.2020.01.02 [2] Huang J G,Luo Y H,Wang Y S,Zhu X M,Ou J F,Zhang Y Y,Nan K. 2020. Characterization of slope ground motion response based on ambient noise test:A case study for the Xishan slope in Zigong[J]. Journal of Chengdu University of Technology (Science &Technology Edition) ,47(1):16–27 (in Chinese). [3] 刘必灯. 2011. 断陷盆地及断层破碎带场地地震动效应[D]. 哈尔滨: 中国地震局工程力学研究所: 87–104. [4] Liu B D. 2011. Site Effect of Strong Ground Motion for Dislocation Basin and Fault Fracture Zone[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 87–104 (in Chinese). [5] 刘必灯,王伟,彭小波,周正华,于淼. 2017. SV波入射下断层参数对地表地震动的影响[J]. 防灾减灾工程学报,37(1):25–32. [6] Liu B D,Wang W,Peng X B,Zhou Z H,Yu M. 2017. Influence of fault characteristics on ground motion for incident SV waves[J]. Journal of Disaster Prevention and Mitigation Engineering,37(1):25–32 (in Chinese). [7] 卢滔,周正华,周雍年,仲维照. 2006. 关于Nakamura方法有效性的讨论[J]. 地震工程与工程振动,26(1):43–48. doi: 10.3969/j.issn.1000-1301.2006.01.007 [8] Lu T,Zhou Z H,Zhou Y N,Zhong W Z. 2006. Discussion on validation of Nakamura’s technique[J]. Earthquake Engineering and Engineering Vibration,26(1):43–48 (in Chinese). [9] 罗永红. 2011. 地震作用下复杂斜坡响应规律研究[D]. 成都: 成都理工大学: 40–65. [10] Luo Y H. 2011. Study on Complex Slopes Response Law Under Earthquake Action[D]. Chengdu: Chengdu University of Technology: 40–65 (in Chinese). [11] 孙浩越,何宏林,魏占玉,高伟. 2015. 大凉山断裂带北段东支:竹马断裂晚第四纪活动性[J]. 地震地质,37(2):440–454. doi: 10.3969/j.issn.0253-4967.2015.02.008 [12] Sun H Y,He H L,Wei Z Y,Gao W. 2015. Late Quaternary activity of Zhuma fault on the north segment of Daliangshan fault zone[J]. Seismology and Geology,37(2):440–454 (in Chinese). [13] 王伟君,陈棋福,齐诚,谭毅培,张项,周青云. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性:以保定地区为例[J]. 地球物理学报,54(7):1783–1797. doi: 10.3969/j.issn.0001-5733.2011.07.012 [14] Wang W J,Chen Q F,Qi C,Tan Y P,Zhang X,Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method:A case in Baoding area of Hebei Province,China[J]. Chinese Journal of Geophysics,54(7):1783–1797 (in Chinese). [15] 王运生, 罗永红, 刘江伟. 2020. 石棉断层构造及工程效应研究[D]. 成都: 成都理工大学: 25–28. [16] Wang Y S, Luo Y H, Liu J W. 2020. Study on the Structure and Engineering Effect of Shimian Fault[D]. Chengdu: Chengdu University of Technology: 25–28 (in Chinese). [17] 中华人民共和国住房和城乡建设部. 2006. 铁路工程抗震设计规范GB 50111—2006[S]. 北京: 中国计划出版社: 8–11. [18] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2006. Code for Seismic Design of Railway Engineering GB 50111−2006[S]. Beijing: China Planning Press: 8–11 (in Chinese). [19] 张倬元, 王士天, 王兰生, 黄润秋, 许强, 陶连金. 2016. 工程地质分析原理[M]. 第四版. 北京: 地质出版社: 180–186. [20] Zhang Z Y, Wang S T, Wang L S, Huang R Q, Xu Q, Tao L J. 2016. Analysis Principles of Engineering Geology[M]. 4th ed. Beijing: Geological Publishing House: 180–186 (in Chinese). [21] 朱兴貌. 2020. 四川绵竹九龙镇跨断层斜坡地震动力响应研究[D]. 成都: 成都理工大学: 40–78. [22] Zhu X M. 2020. Study on Seismic Dynamic Response of Cross Fault Slope in Jiulongzhen, Mianzhu, Sichuan Province[D]. Chengdu: Chengdu University of Technology: 40–78 (in Chinese). [23] Ben-Zion Y. 1998. Properties of seismic fault zone waves and their utility for imaging low-velocity structures[J]. J Geophys Res,103(B6):12567–12585. doi: 10.1029/98JB00768 [24] Konno K,Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am,88(1):228–241. doi: 10.1785/BSSA0880010228 [25] Li Y G,Leary P,Aki K,Malin P. 1990. Seismic trapped modes in the Oroville and San Andreas fault zones[J]. Science,249(4970):763–766. doi: 10.1126/science.249.4970.763 [26] Li Y G,Aki K,Adams D,Hasemi A,Lee W H K. 1994. Seismic guided waves trapped in the fault zone of the Landers,California,earthquake of 1992[J]. J Geophys Res,99(B6):11705–11722. doi: 10.1029/94JB00464 [27] Nakamura Y. 1989. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface[R]. Tokyo: Railway Technical Research Institute: 25–30. [28] Nakamura Y. 2009. Basic structure of QTS (HVSR) and examples of applications[G]//Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data. Dordrecht: Springer: 33–51. [29] Nakamura Y. 2010. Comment on “Microtremor measurements in the Nile Delta basin,Egypt:Response of the topmost sedimentary layer” by E. A. Fergany and S. Bonnefoy-Claudet[J]. Seismol Res Lett,81(2):241–243. doi: 10.1785/gssrl.81.2.241 [30] Parolai S,Bormann P,Milkereit C. 2002. New relationships between VS,thickness of sediments,and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany)[J]. Bull Seismol Soc Am,92(6):2521–2527. doi: 10.1785/0120010248 [31] Qiu H,Hillers G,Ben-Zion Y. 2020. Temporal changes of seismic velocities in the San Jacinto fault zone associated with the 2016 MW5.2 Borrego Springs earthquake[J]. Geophys J Int,220(3):1536–1554. doi: 10.1093/gji/ggz538 [32] Tebbouche M Y,Machane D,Chabane S,Oubaiche E H,Meziani A A,Benamar D A,Moulouel H,Lounis G C,Bensalem R,Bendaoud A. 2017. Imagery of the metamorphic bedrock roof of the Sahel active fault in the Sablettes (Algiers) reclaimed area by ambient vibration HVSR[J]. Arab J Geosci,10(13):292. doi: 10.1007/s12517-017-3074-1 [33] Wathelet M,Jongmans D,Ohrnberger M,Bonnefoy-Claudet S. 2008. Array performances for ambient vibrations on a shallow structure and consequences over VS inversion[J]. J Seismol,12(1):1–19. doi: 10.1007/s10950-007-9067-x [34] Woolery E W,Street R. 2002. 3D near-surface soil response from H/V ambient-noise ratios[J]. Soil Dyn Earthq Eng,22(9/12):865–876. [35] Yamazaki F,Ansary M A. 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization[J]. Earthq Eng Struct Dyn,26(7):671–689. doi: 10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO;2-S [36] Zare M A,Haghshenas E,Jafari M K. 2017. Interpretation of dynamic response of a very complex landslide (Latian-Tehran) based on ambient noise investigation[J]. Soil Dyn Earthq Eng,100:559–572. doi: 10.1016/j.soildyn.2017.07.006 -