基于环境噪声测试的隐伏断层场地H/V谱比特征分析

胡鹏 罗永红 宋志宾 南凯

胡鹏,罗永红,宋志宾,南凯. 2022. 基于环境噪声测试的隐伏断层场地H/V谱比特征分析. 地震学报,44(3):528−537 doi: 10.11939/jass.20210054
引用本文: 胡鹏,罗永红,宋志宾,南凯. 2022. 基于环境噪声测试的隐伏断层场地H/V谱比特征分析. 地震学报,44(3):528−537 doi: 10.11939/jass.20210054
Hu P,Luo Y H,Song Z B,Nan K. 2022. H/V spectral ratio characteristics of hidden fault site based on ambient noise test. Acta Seismologica Sinica,44(3):528−537 doi: 10.11939/jass.20210054
Citation: Hu P,Luo Y H,Song Z B,Nan K. 2022. H/V spectral ratio characteristics of hidden fault site based on ambient noise test. Acta Seismologica Sinica44(3):528−537 doi: 10.11939/jass.20210054

基于环境噪声测试的隐伏断层场地H/V谱比特征分析

doi: 10.11939/jass.20210054
基金项目: 国家自然科学基金创新研究群体科学基金(41521002)、国家自然科学基金面上基金(42077257)和地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2019K024)联合资助
详细信息
    作者简介:

    胡鹏,在读硕士研究生,主要从事斜坡地震动响应规律及致灾机理方面的研究,e-mail:739587892@qq.com

    通讯作者:

    罗永红,博士,教授,主要从事斜坡地震动力响应规律及致灾机理方面的研究,e-mail:lyh445890689@qq.com

  • 中图分类号: P315.02

H/V spectral ratio characteristics of hidden fault site based on ambient noise test

  • 摘要: 基于四川石棉县安顺场隐伏断层穿越区的60余次环境噪声测试,探讨了隐伏断层对环境噪声H/V谱比特征的影响,并且通过研究区所获卓越频率对其覆盖层厚度进行估算,以覆盖层厚度的变化揭示了隐伏断层的行迹。结果显示:① 在排除可能受河流影响引发的高频区后,隐伏断层带处的H/V谱比曲线多呈现高频、低放大系数和多峰值频率等特点;② 覆盖层厚度在部分强风化区和河流高频区存在5—10 m的差异;③ 环境噪声阵列反演所得部分覆盖层厚度变化较大区域与隐伏断层的形迹吻合。

     

  • 图  1  石棉县安顺场及周边的地质简图

    Figure  1.  Geological map of Anshun filed of Shimian county and its surrounding regions

    图  2  环境噪声现场测试仪器(a)和环境噪声H/V谱比曲线 (b)

    图(b)中黑虚线代表标准差,黑实线代表平均谱比曲线,彩色曲线代表每个频带窗口的谱比曲线

    Figure  2.  Field test instrument of ambient noise (a) and H/V spectral ratio curves of ambient noise (b)

    In Fig. (b),black dashed curves stand for standard deviation,the black curve for average spectral ratio,color curve for the spectral ratio of each band window

    图  3  安顺场区EW向(a)和NS向(b)卓越频率等值线图

    Figure  3.  Contour map of predominant frequency in EW (a) and NS (b) directions in Anshun field area

    图  4  安顺场区EW向(a)和NS向(b)谱比放大系数等值线图

    Figure  4.  Contour map of spectral ratio amplification factor in EW (a) and NS (b) directions in Anshun field area

    图  5  断层行迹及测点的H/V谱比曲线

    (a) 断层行迹及测点分布;(b) 东、西侧断层附近测点的H/V谱比曲线

    Figure  5.  Fault trace and spectral ratio H/V curves of the measuring points

    (a) Fault traces and the measuring point distribution;(b) H/V spectral ratio curves of the measuring points nearby the east and west sides of the faults

    图  6  工程地质剖面AA′ 和BB′ (a)及覆盖层厚度等值线图(b)

    Figure  6.  Engineering geological profiles AA′ and BB′ (a) and contour map of overburden layer thickness (b)

    图  7  H/V谱比反演剖面CC

    Figure  7.  H/V spectral ratio inversion section CC

    表  1  浅表层岩土场地分类表

    Table  1.   Geotechnical site classification of superficial layer

    浅层岩土类型vS/(m·s−1覆盖层厚度h/m
    h<33<h<99≤h<80h≥80
    基岩vS>500
    中硬土层250<vS≤500
    中软土层125<vS≤250
    软弱土层vS<125
    下载: 导出CSV
  • [1] 黄俊阁,罗永红,王运生,朱兴貌,欧剑锋,张跃跃,南凯. 2020. 基于环境噪声测试表征斜坡地震动响应:以自贡西山斜坡为例[J]. 成都理工大学学报(自然科学版),47(1):16–27. doi: 10.3969/j.issn.1671-9727.2020.01.02
    [2] Huang J G,Luo Y H,Wang Y S,Zhu X M,Ou J F,Zhang Y Y,Nan K. 2020. Characterization of slope ground motion response based on ambient noise test:A case study for the Xishan slope in Zigong[J]. Journal of Chengdu University of Technology (Science &Technology Edition),47(1):16–27 (in Chinese).
    [3] 刘必灯. 2011. 断陷盆地及断层破碎带场地地震动效应[D]. 哈尔滨: 中国地震局工程力学研究所: 87–104.
    [4] Liu B D. 2011. Site Effect of Strong Ground Motion for Dislocation Basin and Fault Fracture Zone[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 87–104 (in Chinese).
    [5] 刘必灯,王伟,彭小波,周正华,于淼. 2017. SV波入射下断层参数对地表地震动的影响[J]. 防灾减灾工程学报,37(1):25–32.
    [6] Liu B D,Wang W,Peng X B,Zhou Z H,Yu M. 2017. Influence of fault characteristics on ground motion for incident SV waves[J]. Journal of Disaster Prevention and Mitigation Engineering,37(1):25–32 (in Chinese).
    [7] 卢滔,周正华,周雍年,仲维照. 2006. 关于Nakamura方法有效性的讨论[J]. 地震工程与工程振动,26(1):43–48. doi: 10.3969/j.issn.1000-1301.2006.01.007
    [8] Lu T,Zhou Z H,Zhou Y N,Zhong W Z. 2006. Discussion on validation of Nakamura’s technique[J]. Earthquake Engineering and Engineering Vibration,26(1):43–48 (in Chinese).
    [9] 罗永红. 2011. 地震作用下复杂斜坡响应规律研究[D]. 成都: 成都理工大学: 40–65.
    [10] Luo Y H. 2011. Study on Complex Slopes Response Law Under Earthquake Action[D]. Chengdu: Chengdu University of Technology: 40–65 (in Chinese).
    [11] 孙浩越,何宏林,魏占玉,高伟. 2015. 大凉山断裂带北段东支:竹马断裂晚第四纪活动性[J]. 地震地质,37(2):440–454. doi: 10.3969/j.issn.0253-4967.2015.02.008
    [12] Sun H Y,He H L,Wei Z Y,Gao W. 2015. Late Quaternary activity of Zhuma fault on the north segment of Daliangshan fault zone[J]. Seismology and Geology,37(2):440–454 (in Chinese).
    [13] 王伟君,陈棋福,齐诚,谭毅培,张项,周青云. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性:以保定地区为例[J]. 地球物理学报,54(7):1783–1797. doi: 10.3969/j.issn.0001-5733.2011.07.012
    [14] Wang W J,Chen Q F,Qi C,Tan Y P,Zhang X,Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method:A case in Baoding area of Hebei Province,China[J]. Chinese Journal of Geophysics,54(7):1783–1797 (in Chinese).
    [15] 王运生, 罗永红, 刘江伟. 2020. 石棉断层构造及工程效应研究[D]. 成都: 成都理工大学: 25–28.
    [16] Wang Y S, Luo Y H, Liu J W. 2020. Study on the Structure and Engineering Effect of Shimian Fault[D]. Chengdu: Chengdu University of Technology: 25–28 (in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 2006. 铁路工程抗震设计规范GB 50111—2006[S]. 北京: 中国计划出版社: 8–11.
    [18] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2006. Code for Seismic Design of Railway Engineering GB 50111−2006[S]. Beijing: China Planning Press: 8–11 (in Chinese).
    [19] 张倬元, 王士天, 王兰生, 黄润秋, 许强, 陶连金. 2016. 工程地质分析原理[M]. 第四版. 北京: 地质出版社: 180–186.
    [20] Zhang Z Y, Wang S T, Wang L S, Huang R Q, Xu Q, Tao L J. 2016. Analysis Principles of Engineering Geology[M]. 4th ed. Beijing: Geological Publishing House: 180–186 (in Chinese).
    [21] 朱兴貌. 2020. 四川绵竹九龙镇跨断层斜坡地震动力响应研究[D]. 成都: 成都理工大学: 40–78.
    [22] Zhu X M. 2020. Study on Seismic Dynamic Response of Cross Fault Slope in Jiulongzhen, Mianzhu, Sichuan Province[D]. Chengdu: Chengdu University of Technology: 40–78 (in Chinese).
    [23] Ben-Zion Y. 1998. Properties of seismic fault zone waves and their utility for imaging low-velocity structures[J]. J Geophys Res,103(B6):12567–12585. doi: 10.1029/98JB00768
    [24] Konno K,Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am,88(1):228–241. doi: 10.1785/BSSA0880010228
    [25] Li Y G,Leary P,Aki K,Malin P. 1990. Seismic trapped modes in the Oroville and San Andreas fault zones[J]. Science,249(4970):763–766. doi: 10.1126/science.249.4970.763
    [26] Li Y G,Aki K,Adams D,Hasemi A,Lee W H K. 1994. Seismic guided waves trapped in the fault zone of the Landers,California,earthquake of 1992[J]. J Geophys Res,99(B6):11705–11722. doi: 10.1029/94JB00464
    [27] Nakamura Y. 1989. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface[R]. Tokyo: Railway Technical Research Institute: 25–30.
    [28] Nakamura Y. 2009. Basic structure of QTS (HVSR) and examples of applications[G]//Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data. Dordrecht: Springer: 33–51.
    [29] Nakamura Y. 2010. Comment on “Microtremor measurements in the Nile Delta basin,Egypt:Response of the topmost sedimentary layer” by E. A. Fergany and S. Bonnefoy-Claudet[J]. Seismol Res Lett,81(2):241–243. doi: 10.1785/gssrl.81.2.241
    [30] Parolai S,Bormann P,Milkereit C. 2002. New relationships between VS,thickness of sediments,and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany)[J]. Bull Seismol Soc Am,92(6):2521–2527. doi: 10.1785/0120010248
    [31] Qiu H,Hillers G,Ben-Zion Y. 2020. Temporal changes of seismic velocities in the San Jacinto fault zone associated with the 2016 MW5.2 Borrego Springs earthquake[J]. Geophys J Int,220(3):1536–1554. doi: 10.1093/gji/ggz538
    [32] Tebbouche M Y,Machane D,Chabane S,Oubaiche E H,Meziani A A,Benamar D A,Moulouel H,Lounis G C,Bensalem R,Bendaoud A. 2017. Imagery of the metamorphic bedrock roof of the Sahel active fault in the Sablettes (Algiers) reclaimed area by ambient vibration HVSR[J]. Arab J Geosci,10(13):292. doi: 10.1007/s12517-017-3074-1
    [33] Wathelet M,Jongmans D,Ohrnberger M,Bonnefoy-Claudet S. 2008. Array performances for ambient vibrations on a shallow structure and consequences over VS inversion[J]. J Seismol,12(1):1–19. doi: 10.1007/s10950-007-9067-x
    [34] Woolery E W,Street R. 2002. 3D near-surface soil response from H/V ambient-noise ratios[J]. Soil Dyn Earthq Eng,22(9/12):865–876.
    [35] Yamazaki F,Ansary M A. 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization[J]. Earthq Eng Struct Dyn,26(7):671–689. doi: 10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO;2-S
    [36] Zare M A,Haghshenas E,Jafari M K. 2017. Interpretation of dynamic response of a very complex landslide (Latian-Tehran) based on ambient noise investigation[J]. Soil Dyn Earthq Eng,100:559–572. doi: 10.1016/j.soildyn.2017.07.006
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  83
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 修回日期:  2021-06-16
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回