接收函数、面波频散与重力联合约束地壳厚度与波速比

任志远 李永华 强正阳 石磊

任志远,李永华,强正阳,石磊. 2022. 接收函数、面波频散与重力联合约束地壳厚度与波速比. 地震学报,44(0):1−15 doi: 10.11939/jass.20210065
引用本文: 任志远,李永华,强正阳,石磊. 2022. 接收函数、面波频散与重力联合约束地壳厚度与波速比. 地震学报,44(0):1−15 doi: 10.11939/jass.20210065
Ren Z Y,Li Y H,Qiang Z Y,Shi L. 2022. Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data. Acta Seismologica Sinica,44(0):1−15 doi: 10.11939/jass.20210065
Citation: Ren Z Y,Li Y H,Qiang Z Y,Shi L. 2022. Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data. Acta Seismologica Sinica44(0):1−15 doi: 10.11939/jass.20210065

接收函数、面波频散与重力联合约束地壳厚度与波速比

doi: 10.11939/jass.20210065
基金项目: 国家自然科学基金(U1839210、41874108、41874097)和中国地震局地球物理研究所中央级公益性科研院所基本科研业务专项(DQJB20X47)联合资助
详细信息
    作者简介:

    任志远,在读硕士研究生,主要从事固体地球物理学研究,目前任职于山东省地震局,e-mail:353452580@qq.com

    李永华,博士,研究员,主要从事固体地球物理学研究,e-mail:liyh@cea-igp.ac.cn

  • 中图分类号: P315

Estimating of crustal thickness and vP/vS ratio using receiver function,surface wave and gravity data

  • 摘要: 提出了一种利用接收函数、面波频散和重力数据联合约束地壳厚度、vP/vS和平均P波速度的改进方法,并基于两种地壳模型对改进后的方法进行了验证,结果显示,改进后的方法不仅可以提高地壳厚度和波速比的估计精度,还能对地壳平均P波速度给出准确估计。在此基础上,将该方法应用于华南地区两个固定台站地壳结构的分析,相关结果也证实了该方法在确定地壳结构估计中的可行性。

     

  • 图  1  用于正演测试的两个速度模型:

    (a) 简单速度模型;(b) 包含低速层的速度模型

    Figure  1.  Two speed models used for forward testing

    (a) Simple velocity model;(b) Velocity model including a low velocity layer

    图  2  基于模型(图1)合成的接收函数(上)和瑞雷波群速度U频散(下)

    (a)基于模型1合成的接收函数和瑞雷波群速度频散;(b)基于模型2合成的接收函数和瑞雷波群速度频散。

    Figure  2.  Based on the models (Fig 1) synthesis of the receiver function (upper panels) and Rayleigh wave dispersion (lower panels)

    (a) The receiver function and Rayleigh wave dispersion based on Model 1;(b) The receiver function and Rayleigh wave dispersion based on Model 2,respectively

    图  3  用于理论重力异常正演而构建的地壳厚度(a)和波速比(b)横向分布模型

    黑色三角形表示台站位置,红色三角形代表中心地震台

    Figure  3.  The crustal thickness (a) and vP/vS ratio(b) distributions of the synthetic models

    Black triangles denote the seismic stations,and red triangle denotes the central station to be estimated

    图  4  基于模型(图3)正演得到的重力异常(红色三角形代表中心地震台)

    (a)莫霍重力异常;(b)地壳重力异常;(c)叠加重力异常

    Figure  4.  The gravity anomalies from the forward of the synthetic models

    (a) Moho gravity anomaly;,(b) Crustal gravity anomaly; (c) Superposed gravity anomaly

    图  5  基于模型1(图1左)得到的Hκ约束图(图中白线代表最优值68%的置信区间)

    (a)接收函数Hκ叠加图;(b) 初始P波速度为6.1 km/s时的面波Hκ似然图;(c) 初始P波速度为6.2 km/s时的面波Hκ似然图;(d)重力Hκ似然图;(e) 初始P波速度为6.1 km/s时,接收函数与重力联合约束图;(f) 初始P波速度为6.2 km/s时,接收函数与重力联合约束图;(g) 接收函数、面波和重力联合约束图

    Figure  5.  The H–κ stacking map based on model 1, where white lines represent the 68% confidence interval (最优值未译出?)

    (a) The receiver function H–κ stacking map;,(b) The surface wave H–κ likelihood map with initial? vP=6.1 km/s;,(c)The surface wave H–κ likelihood map with vP=6.2 km/s;,(d) The gravity H–κ,likelihood map; (e,f) Normalized SR*SD with vP=6.1 km/s and vP=6.2 km/s;(g) Joint H–κ stacking map

    图  6  基于模型2(图1右)得到的Hκ约束图(图中白线代表最优值68%的置信区间)

    (a)接收函数Hκ叠加图;(b)面波Hκ似然图;(c)重力Hκ似然图;(d)初始P波速度为6.1 km/s时,接收函数与重力联合约束图;(e)接收函数、面波和重力联合约束图

    Figure  6.  The H–κ stacking map based on model 2, where white lines represent the 68% confidence interval

    (a)Receiver function H–κ stacking map,(b)Surface wave H–κ likelihood map with vP=6.1 km/s,(c) Gravity H–κ likelihood map;(d) Normalized SR*SD with vP=6.1 km/s;(e) Joint H–κ stacking map

    图  7  研究区布格重力异常

    其中黑三角代表台站HB_YDU,红三角代表台站HB_NZH

    Figure  7.  The location of the study area and the complete Bouguer gravity anomalies in study area

    图  8  台站HB_NZH数据资料及计算得到的Hκ约束图(图中白线代表最优值68%的置信区间)

    (a) HB_NZH台站观测接收函数;(b)实测瑞雷波群速度频散(Li et al,2013);(c)接收函数Hκ叠加图;(d)面波Hκ似然图;(e)重力Hκ似然图;(f)联合约束图

    Figure  8.  Data and H–κ stacking map of station HB_NZH,White lines in (c)–(f) represent the 68 percent confidence interval

    (a) Observed receiver functions of station HB_NZH;(b) Observed dispersions (Li et al,2013);(c)Receiver function H–κ stacking map;(d)the surface wave H–κ likelihood map,;(e)Gravity H–κ likelihood map;(f) Joint H–κ stacking map

    图  9  台站HB_YDU数据资料及计算得到的Hκ约束图(图中白线代表最优值68%的置信区间)

    (a) HB_YDU台站实测接收函数;(b)实测瑞利波群速度频散(Li et al,2013);(c)接收函数Hκ叠加图;(d)面波频散Hκ似然图;(e)重力Hκ似然图;(f)联合约束图

    Figure  9.  Data and H–κ stacking map of station HB_YDU,White lines in (c)–(f) represent the 68 percent confidence interval.White lines represent the 68 percent confidence interval

    (a) observed receiver functions of station HB_YDU;(b) Observed dispersions(Li et al,2013);(c) the receiver function H–κ stacking map;(d)the surface wave H–κ likelihood map;(e) the gravity H–κ likelihood map;(f) the joint H–κ stacking map

  • [1] 邓阳凡,李守林,范蔚茗,刘佳. 2011. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报,54(10):2560–2574. doi: 10.3969/j.issn.0001-5733.2011.10.013
    [2] Deng Y F,Li S L,Fan W M,Liu J. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics,54(10):2560–2574 (in Chinese).
    [3] 王谦身等. 2003. 重力学. 北京: 地震出版社.
    [4] Wang Q S. 2003. Gravitology[M]. Beijing: Seismological Press. (in Chinese)
    [5] 吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010
    [6] Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).
    [7] 杨晓瑜,李永华. 2021. 中国华南地区地壳厚度与波速比分布特征及其地质意义[J]. 地球物理学报,64(1):146–156. doi: 10.6038/cjg2021N0320
    [8] Yang X Y,Li Y H. 2021. Crustal thicknesses and VP/VSratios beneath South China estimated from receiver function analysis and their geological implications[J]. Chinese Journal of Geophysics,64(1):146–156 (in Chinese).
    [9] 郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心” 技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031
    [10] Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
    [11] Balmino G, Vales N, Bonvalot S, Briais A 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. J Geod, 86(7): 499-520.
    [12] Balmino G, Vales N, Bonvalot S, Briais A. 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86(7), 499-520.
    [13] Blakely R J. , 1995. Potential Theory in Gravity and Magnetic Applications[M]. , Cambridge University Press, New York.
    [14] Burdick L J, Langston, C A. , 1977. Modeling crustal structure through the use of converted phases in teleseismic body-wave forms[J]. Bull Seismol Soc Am, 67(3), 677–691.
    [15] Christensen N I,Fountain D M. 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite[J]. GSA Bull,86(2):227–236. doi: 10.1130/0016-7606(1975)86<227:COTLCC>2.0.CO;2
    [16] Christensen, N I. , 1996. Poisson’s ratio and crustal seismology[J]. GeophysRes: Solid Earth, 101(B2), 3139–3156.
    [17] Delph J R,Levander A,Niu F L. 2019. Constraining crustal properties using receiver functions and the autocorrelation of earthquake-generated body waves[J]. J Geophys Res:Solid Earth,124(8):8981–8997. doi: 10.1029/2019JB017929
    [18] Eaton D W,Dineva S,Mereu R. 2006. Crustal thickness and VP/VS variations in the Grenville orogen (Ontario,Canada) from analysis of teleseismic receiver functions[J]. Tectonophysics,420(1/2):223–238.
    [19] Guo L H,Meng X H,Chen Z X,Li S L,Zheng Y M. 2013. Preferential filtering for gravity anomaly separation[J]. Comput Geosci,51:247–254. doi: 10.1016/j.cageo.2012.09.012
    [20] Guo L H,Gao R,Shi L,Huang Z R,Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth Planet Sci Lett,510:142–152. doi: 10.1016/j.jpgl.2018.12.039
    [21] Guo L H,Gao R. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Res,309:45–55. doi: 10.1016/j.precamres.2017.01.028
    [22] Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
    [23] Huang R,Xu Y X,Zhu L P,He K. 2015. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust[J]. J Asian Earth Sci,112:42–48. doi: 10.1016/j.jseaes.2015.09.002
    [24] Julià J,Mejía J. 2004. Thickness and Vp/Vs ratio variation in the Iberian crust[J]. Geophys J Int,156(1):59–72. doi: 10.1111/j.1365-246X.2004.02127.x
    [25] Li Y H,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography[J]. Earth Planet Sci Lett,377-378:367–377. doi: 10.1016/j.jpgl.2013.06.033
    [26] Li Y H,Gao M T,Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019
    [27] Lowry A R,Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation[J]. Nature,471(7338):353–357. doi: 10.1038/nature09912
    [28] Luo S,Zhu L P,Huang R,Luo Y H,Jiang X H,Hua Y Y. 2019. Determination of crustal thickness and velocities by using receiver functions and PmP travel times[J]. Geophys J Int,216(2):1304–1312. doi: 10.1093/gji/ggy500
    [29] Ma Y L,Zhou H L. 2007. Crustal thicknesses and Poisson's ratios in China by joint analysis of teleseismic receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett,34(12):L12304. doi: 10.1029/2007GL029848
    [30] Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies[J]. Geophysics,39(4):526–536. doi: 10.1190/1.1440444
    [31] Shen W S,Ritzwoller M H,Kang D,Kim Y,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
    [32] Shi L,Guo L H,Ma Y W,Li Y H,Wang W L. 2018. Estimating crustal thickness and Vp/Vs ratio with joint constraints of receiver function and gravity data[J]. Geophys J Int,213(2):1334–1344. doi: 10.1093/gji/ggy062
    [33] Teng J W,Zhang Z J,Zhang X K,Wang C Y,Gao R,Yang B J,Qiao Y H,Deng Y F. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics,609:202–216. doi: 10.1016/j.tecto.2012.11.024
    [34] Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Phys Earth Planet Inter,15(1):39–45. doi: 10.1016/0031-9201(77)90008-5
    [35] Wang C Y,Zhu L P,Lou H,Huang B S,Yao Z X,Luo X H. 2010. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. J Geophys Res:Solid Earth,115(B11):B11301. doi: 10.1029/2010JB007527
    [36] Zhao Y,Guo L H,Shi L,Li Y H. 2018. The crustal structure of the North-South Earthquake Belt in China revealed from deep seismic soundings and gravity data[J]. Pure Appl Geophys,175(1):193–205. doi: 10.1007/s00024-017-1691-y
    [37] Zhou L Q,Xie J Y,Shen W S,Zheng Y,Yang Y J,Shi H X,Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophys J Int,189(3):1565–1583. doi: 10.1111/j.1365-246X.2012.05423.x
    [38] Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • 加载中
图(10)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  24
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2022-09-01

目录

    /

    返回文章
    返回