倾斜边坡多道面波分析中的最小偏移距估计方法

戴靠山 汪士权 刘康 游庆瑜

戴靠山,汪士权,刘康,游庆瑜. 2022. 倾斜边坡多道面波分析中的最小偏移距估计方法. 地震学报,44(2):327−338 doi: 10.11939/jass.20210098
引用本文: 戴靠山,汪士权,刘康,游庆瑜. 2022. 倾斜边坡多道面波分析中的最小偏移距估计方法. 地震学报,44(2):327−338 doi: 10.11939/jass.20210098
Dai K S,Wang S Q,Liu K,You Q Y. 2022. The nearest offset distance estimation method for multi-channel analysis of surface waves in slope. Acta Seismologica Sinica,44(2):327−338 doi: 10.11939/jass.20210098
Citation: Dai K S,Wang S Q,Liu K,You Q Y. 2022. The nearest offset distance estimation method for multi-channel analysis of surface waves in slope. Acta Seismologica Sinica44(2):327−338 doi: 10.11939/jass.20210098

倾斜边坡多道面波分析中的最小偏移距估计方法

doi: 10.11939/jass.20210098
基金项目: 国家自然科学基金(42006063)和上海佘山地球物理国家野外科学观测研究站开放基金(2020K05)资助
详细信息
    作者简介:

    戴靠山,工学博士,教授,主要从事地震动监测、地震危险性评价、工程减灾等方面的研究,e-mail:kdai@scu.edu.cn

    通讯作者:

    刘康,理学博士,工程师,主要从事地震动监测、面波正演及反演分析,e-mail:liukang19@tongji.edu.cn

  • 中图分类号: P315.3+1

The nearest offset distance estimation method for multi-channel analysis of surface waves in slope

  • 摘要: 为减小倾斜边坡中能量较强的近场体波对面波识别的干扰,确保多道面波分析方法接收到的瑞雷波分量具有较强的能量,本文通过分析地下震源在倾斜边坡产生的瑞雷波及其传播规律,基于几何地震学提出了在倾斜地表生成瑞雷波的最小偏移距的经验公式,建立了界面起伏的层状倾斜边坡模型,从而获得模拟共炮点记录,并将基于共炮点记录得到的地表质点运动轨迹、频散计算结果与理论值、估计值进行了对比,结果显示四者具有较强的相关性,由此表明本文提出的最小偏移距估计方法对层状倾斜边坡地表的面波勘探具有一定的指导意义。

     

  • 图  1  倾斜边坡示意图

    (a) 上倾边坡;(b) 下倾边坡

    Figure  1.  Schematic diagram of slopes

    (a) Updip slope;(b) Downdip slope

    图  2  单层(a)与多层(b)上倾边坡示意图

    Figure  2.  Schematic diagram of single-layer (a) and multi-layer (b) updip slopes

    图  3  单层(a)与多层(b)下倾边坡示意图

    Figure  3.  Schematic diagram of a single-layer (a) and multi-layer (b) downdip slopes

    图  4  多层水平地层示意图(a)及其共炮点记录(b)

    Figure  4.  Schematic diagram of a multi-layer horizontal strata (a) and its common shot point gathers (b)

    图  5  不同偏移距d下水平地层地表的质点偏振图

    Figure  5.  Polarization map of surface particles in horizontal strata with different offset d

    图  6  不同偏移距d范围内的水平地层频散计算图

    Figure  6.  Dispersion calculation diagram of horizontal strata with different offset d

    图  7  多层上倾边坡示意图(a)及其共炮点记录(b)

    Figure  7.  Schematic diagram of a multi-layer updip slope (a) and its common shot point gathers (b)

    图  8  不同偏移距d范围内上倾边坡地表质点偏振图

    Figure  8.  Polarization map of surface particles on updip slope with different offset d

    图  9  不同偏移距d范围内的上倾边坡频散计算图

    Figure  9.  Dispersion calculation diagram of updip slope with different offset d

    图  10  多层下倾边坡示意图(a)及其共炮点记录(b)

    Figure  10.  Schematic diagram of a multi-layer downdip slope (a) and its common shot point gathers (b)

    图  11  不同偏移距d范围内下倾边坡地表质点偏振图

    Figure  11.  Polarization map of surface particles on downdip slope with different offset d

    图  12  不同偏移距d范围内的下倾边坡频散计算图

    Figure  12.  Dispersion calculation diagram of downdip slope with different offset d

    表  1  本文所用模型的地层参数

    Table  1.   Stratum parameters of the models used in this study

    层位厚度/mvP/(m·s−1vS/(m·s−1
    4480200
    6600247
    半无限空间750294
    注:地层③因倾斜角度从左至右厚度变化,不作统计。
    下载: 导出CSV
  • [1] 陈浩朋,朱良保,叶庆东,王清东. 2012. 多地震叠加提取双台间面波频散信息[J]. 地震学报,34(6):773–784. doi: 10.3969/j.issn.0253-3782.2012.06.004
    [2] Chen H P,Zhu L B,Ye Q D,Wang Q D. 2012. Measurement of inter-station surface wave dispersion using multi-earthquake data stacking[J]. Acta Seismologica Sinica,34(6):773–784 (in Chinese).
    [3] 房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279. doi: 10.6038/cjg20130714
    [4] Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    [5] 冯梅,安美建,van der Lee S. 2008. 利用面波波形模拟探测中国大陆地壳和上地幔波速结构的分区特征[J]. 地震学报,30(2):114–122. doi: 10.3321/j.issn:0253-3782.2008.02.002
    [6] Feng M,An M J,van der Lee S. 2008. Region-related features of crustal and upper-mantle velocity structure of the Chinese mainland detected by surface waveform modeling[J]. Acta Seismologica Sinica,30(2):114–122 (in Chinese).
    [7] 李白基,李宁,陈虹. 1989. 南北地震带和两侧的瑞利面波群速度差异及其大地构造意义[J]. 地震学报,11(3):268–274.
    [8] Li B J,Li N,Chen H. 1989. Group velocity differences of Rayleigh waves between the NS seismic belt,China,and the side regions,and their tectonic implications[J]. Acta Seismologica Sinica,11(3):268–274 (in Chinese).
    [9] 刘康,戴靠山,许强,翁渝峰,黄李观,赵逍,游庆瑜. 2018. 埋入源多道面波分析(MASW)中最小偏移距的估计方法[J]. 地球物理学报,61(6):2421–2432. doi: 10.6038/cjg2018L0285
    [10] Liu K,Dai K S,Xu Q,Weng Y F,Huang L G,Zhao X,You Q Y. 2018. Nearest offset design for multichannel analysis of surface waves (MASW) method with buried source excitations[J]. Chinese Journal of Geophysics,61(6):2421–2432 (in Chinese).
    [11] 刘庆华,鲁来玉,王凯明. 2015. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展,30(6):2906–2922. doi: 10.6038/pg20150660
    [12] Liu Q H,Lu L Y,Wang K M. 2015. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics,30(6):2906–2922 (in Chinese).
    [13] 沈玉松,康英. 2014. 广东及其邻域噪声面波层析成像[J]. 地震学报,36(5):826–836.
    [14] Shen Y S,Kang Y. 2014. Surface wave tomography of Guangdong and its adjacent areas from ambient seismic noise[J]. Acta Seismologica Sinica,36(5):826–836 (in Chinese).
    [15] 王小龙,马胜利,郭志,雷兴林,夏英杰,郭欣,余国政,勾宪斌,蒋霞东. 2013. 利用地震背景噪声成像技术反演三峡库区及邻近地区地壳剪切波速度结构[J]. 地球物理学报,56(12):4113–4124. doi: 10.6038/cjg20131216
    [16] Wang X L,Ma S L,Guo Z,Lei X L,Xia Y J,Guo X,Yu G Z,Gou X B,Jiang X D. 2013. S-wave velocity of the crust in Three Gorges Reservoir and the adjacent region inverted from seismic ambient noise tomography[J]. Chinese Journal of Geophysics,56(12):4113–4124 (in Chinese).
    [17] 席超强. 2017. 复杂地形条件下面波探查技术研究与应用[D]. 淮南: 安徽理工大学: 47–49.
    [18] Xi C Q. 2017. Surface Wave Detection Research and Application Technology of Complex Terrain Condition[D]. Huainan: Anhui University of Science and Technology: 47–49 (in Chinese).
    [19] 夏江海,高玲利,潘雨迪,沈超,尹晓菲. 2015. 高频面波方法的若干新进展[J]. 地球物理学报,58(8):2591–2605. doi: 10.6038/cjg20150801
    [20] Xia J H,Gao L L,Pan Y D,Shen C,Yin X F. 2015. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics,58(8):2591–2605 (in Chinese).
    [21] Aki K. 1957. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull Earthq Res Inst Tokyo,35:415–456.
    [22] Capon J. 1970. Applications of detection and estimation theory to large array seismology[J]. Proc IEEE,58(5):760–770. doi: 10.1109/PROC.1970.7730
    [23] Chai H K,Momoki S,Aggelis D G,Shiotani T. 2010. Characterization of deep surface-opening cracks in concrete:Feasibility of impact-generated Rayleigh-waves[J]. Mater J,107(3):305–311.
    [24] Cristini P,Komatitsch D. 2012. Some illustrative examples of the use of a spectral-element method in ocean acoustics[J]. J Acoust Soc Am,131(3):EL229–EL235. doi: 10.1121/1.3682459
    [25] Dai K S,Liu K,Li X F,You Q Y,Tang H S,Xu Q. 2019. Application of passive multichannel analysis of surface waves method at sites close to underground railways:Problems and a case study[J]. Appl Geophys,164:191–199. doi: 10.1016/j.jappgeo.2019.03.009
    [26] Dikmen Ü,Arısoy M Ö,Akkaya İ. 2010. Offset and linear spread geometry in the MASW method[J]. J Geophys Eng,7(2):211–222. doi: 10.1088/1742-2132/7/2/S07
    [27] Ewing W M,Jardetzky W S,Press F,Beiser A. 1957. Elastic waves in layered media[J]. Physics Today,10(12):2.
    [28] Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    [29] Isaacs R P. 1941. The finite differences of polygenic functions[J]. Bull Am Math Soc,47(6):6.
    [30] Jones R. 1958. In-situ measurement of the dynamic properties of soil by vibration methods[J]. Géotechnique,8(1):1–21.
    [31] Komatitsch D,Barnes C,Tromp J. 2012. Wave propagation near a fluid‐solid interface:A spectral‐element approach[J]. Geophysics,65(2):623–631.
    [32] Lay T, Wallace T C. 1995. Modern Global Seismology[M]. California: Academic Press: 98−105.
    [33] Malavika V A,Asraff A K,Kumar M,Sofi A. 2021. Fracture analysis of plates and shells using FEM and XFEM[J]. Innovat Infrastruct Solut,6(1):43. doi: 10.1007/s41062-020-00439-z
    [34] Park C B,Miller R D. 2008. Roadside passive multichannel analysis of surface waves (MASW)[J]. J Environ Eng Geophys,13(1):1–11. doi: 10.2113/JEEG13.1.1
    [35] Rayleigh L. 1885. On waves propagated along the plane surface of an elastic solid[J]. Proc Lond Math Soc,17(1):4–11. doi: 10.1112/plms/s1-17.1.4
    [36] Stokoe K H, Wright S G, Bay J A, Roesset J M. 1994. Characterization of geotechnical sites by SASW method[G]//Geophysical Characterization of Sites. New Delhi: Oxford Publishers: 15–25.
    [37] Xu Y X,Xia J H,Miller R D. 2006. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. J Appl Geophys,59(2):117–125. doi: 10.1016/j.jappgeo.2005.08.002
    [38] Zhang S X,Chan L S,Xia J H. 2004. The selection of field acquisition parameters for dispersion images from multichannel surface wave data[J]. J Pure Appl Geophys,161(1):185–201. doi: 10.1007/s00024-003-2428-7
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  34
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-07-13
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回