翡翠河谷地震地形效应解析分析

高玉峰 代登辉 张宁

高玉峰,代登辉,张宁. 2022. 翡翠河谷地震地形效应解析分析. 地震学报,43(1):1−10 doi: 10.11939/jass.20210099
引用本文: 高玉峰,代登辉,张宁. 2022. 翡翠河谷地震地形效应解析分析. 地震学报,43(1):1−10 doi: 10.11939/jass.20210099
Gao Y F,Dai D H,Zhang N. 2022. Analytical study on the topographic effect of Feitsui canyon. Acta Seismologica Sinica,43(1):1−10 doi: 10.11939/jass.20210099
Citation: Gao Y F,Dai D H,Zhang N. 2022. Analytical study on the topographic effect of Feitsui canyon. Acta Seismologica Sinica43(1):1−10 doi: 10.11939/jass.20210099

翡翠河谷地震地形效应解析分析

doi: 10.11939/jass.20210099
基金项目: 国家自然科学基金(51479050)资助
详细信息
    通讯作者:

    高玉峰,e-mail:yfgao66@163.com

  • 中图分类号: P315.3+1

Analytical study on the topographic effect of Feitsui canyon

  • 摘要: 地表不规则地形的存在往往会引起地震波的散射,进而产生局部地震动放大或衰减的现象。虽然地形效应最早在异常地震记录中被发现,然而利用地形影响台阵记录到的地震动数据却少之又少。基于1992年在我国台湾翡翠河谷上观测到的六条地形影响台阵记录,利用线源SH波入射下非对称“V”形河谷地震波传播解析理论,模拟得到了河谷台阵各点的地震动,揭示了翡翠河谷地形效应对地震动影响的规律。通过与实测记录进行对比,结果表明利用笔者提出的地震波传播解析理论能够较好地反映河谷地形对地震动的影响。

     

  • 图  1  翡翠河谷地震动观测台阵剖面及台站分布示意图(Huang,Chiu,1995

    Figure  1.  Definition sketch for the cross section of Feitsui canyon and the location of six stations

    图  2  翡翠河谷简化二维模型

    Figure  2.  The simplified 2D model of the Feitsui canyon

    图  3  翡翠河谷上SC1—SC6台站所在位置的地震动放大因子随频率f的变化

    Figure  3.  Variation of ground motion amplification factors as a function of frequency at the stations SC1−SC6 in Feitsui canyon

    图  4  输入参考点SC3台站的地震动时程(a)和相应的傅里叶谱(b)

    Figure  4.  Ground motion at the input reference point SC3

    图  5  翡翠河谷上SC1—SC6台站的模拟加速度时程

    Figure  5.  Response acceleration time histories at the stations SC1−SC6 in Feitsui canyon

    图  6  模拟得到的翡翠河谷上SC1—SC6各点加速度傅里叶幅值

    Figure  6.  Response Fourier amplitudes of acceleration at the stations SC1−SC6 in Feitsui canyon

    表  1  1992年9月花莲地震中SC1—SC6台站记录到的地震动PGA (Huang,Chiu,1995

    Table  1.   PGA values at stations SC1−SC6 during Hualien earthquake in September 1992 (Huang,Chiu,1995

    台站名PGA/(cm·s−2台站名PGA/(cm·s−2台站名PGA/(cm·s−2
    SC19.7SC26.5SC35.2
    SC43.6SC54.5SC66.0
    下载: 导出CSV

    表  2  SC1−SC6台站的模拟地震动PGA与监测结果对比

    Table  2.   Comparisons of PGA values at the stations SC1−SC6 between the records and simulation

    台站名监测PGA
    /(cm·s−2
    模拟PGA
    /(cm·s−2
    台站名监测PGA
    /(cm·s−2
    模拟PGA
    /(cm·s−2
    台站名监测PGA
    /(cm·s−2
    模拟PGA
    /(cm·s−2
    SC19.77.8SC35.25.2SC54.53.6
    SC26.56.3SC43.63.1SC66.03.9
    下载: 导出CSV
  • [1] 巴振宁,黄棣旸,梁建文,张艳菊. 2017. 层状半空间中周期分布凸起地形对平面SH波的散射[J]. 地球物理学报,60(3):1039–1052. doi: 10.6038/cjg20170317
    [2] Ba Z N,Huang D Y,Liang J W,Zhang Y J. 2017. Scattering and diffraction of plane SH-waves by periodically distributed hill topographies[J]. Chinese Journal of Geophysics,60(3):1039–1052 (in Chinese).
    [3] 代登辉. 2019. 高山峡谷场地P-SV波散射放大效应及地震动场模拟方法研究[D]. 南京: 河海大学: 77–79.
    [4] Dai D H. 2019. Scattering and Amplification Effect of P-SV Waves and Simulation of Earthquake Ground Motion Field in Alpine Canyon Sites[D]. Nanjing: Hohai University: 77–79 (in Chinese).
    [5] 杜修力,韩强,李忠献,李立云,陈少峰,赵建锋. 2008. 5·12汶川地震中山区公路桥梁震害及启示[J]. 北京工业大学学报,34(12):1270–1279.
    [6] Du X L,Han Q,Li Z X,Li L Y,Chen S F,Zhao J F. 2008. The seismic damage of bridges in the 2008 Wenchuan earthquake and lessons from its damage[J]. Journal of Beijing University of Technology,34(12):1270–1279 (in Chinese).
    [7] 高玉峰,代登辉,张宁. 2021. 河谷地形地震放大效应研究进展与展望[J]. 防灾减灾工程学报,41(4):734–752.
    [8] Gao Y F,Dai D H,Zhang N. 2021. Progress and prospect of topographic amplification effects of seismic wave in canyon sites[J]. Journal of Disaster Prevention and Mitigation Engineering,41(4):734–752 (in Chinese).
    [9] 郭明珠,赵芳,赵凤仙. 2013. 场地地震动局部地形效应研究进展[J]. 震灾防御技术,8(3):311–318. doi: 10.3969/j.issn.1673-5722.2013.03.010
    [10] Guo M Z,Zhao F,Zhao F X. 2013. A review of the effect of small-scale surface topography on ground motions[J]. Technology for Earthquake Disaster Prevention,8(3):311–318 (in Chinese).
    [11] 贺春晖,王进廷,张楚汉. 2017. 基于震源-河谷波场数值模拟的坝址地震动参数确定方法[J]. 地球物理学报,60(2):585–592. doi: 10.6038/cjg20170213
    [12] He C H,Wang J T,Zhang C H. 2017. Determination of seismic parameters for dam sites by numerical simulation of the rupture-canyon wave field[J]. Chinese Journal of Geophysics,60(2):585–592 (in Chinese).
    [13] 何颖,于琴,刘中宪. 2019. 考虑散射效应沉积河谷空间相关多点地震动模拟[J]. 岩土力学,40(7):2739–2747.
    [14] He Y,Yu Q,Liu Z X. 2019. Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect[J]. Rock and Soil Mechanics,40(7):2739–2747 (in Chinese).
    [15] 景立平,陈国兴,李永强,汤皓. 2009. 汶川8.0级地震水坝震害调查[J]. 地震工程与工程振动,29(1):14–23.
    [16] Jing L P,Chen G X,Li Y Q,Tang H. 2009. Investigation on earthquake-induced dam damage during Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration,29(1):14–23 (in Chinese).
    [17] 廖振鹏,刘晶波. 1992. 波动有限元模拟的基本问题[J]. 中国科学:B辑,22(8):874–882.
    [18] Liao Z P,Liu J B. 1992. Fundamental problems in finite element simulation of wave motion[J]. Science in China:Series B,35(11):1353–1364 (in Chinese).
    [19] 林皋,关飞. 1990. 用边界元法研究地震波在不规则地形处的散射问题[J]. 大连理工大学学报,30(2):145–152.
    [20] Lin G,Guan F. 1990. Scattering of seismic waves at irregular topographies by boundary element method[J]. Journal of Dalian University of Technology,30(2):145–152 (in Chinese).
    [21] 刘中宪,苗岳云,陈頔. 2020. 点震源作用下三维沉积盆地地震动谱元模拟[J]. 世界地震工程,36(2):200–208.
    [22] Liu Z X,Miao Y Y,Chen D. 2020. Seismic spectral element simulation of three-dimensional sedimentary basin under the action of point seismic source[J]. World Earthquake Engineering,36(2):200–208 (in Chinese).
    [23] 孙纬宇,汪精河,严松宏,欧尔峰,梁庆国. 2019. SV波斜入射下河谷地形地震动分布特征分析[J]. 振动与冲击,38(20):237–243.
    [24] Sun W Y,Wang J H,Yan S H,Ou E F,Liang Q G. 2019. Characteristic analysis of ground motions of a canyon topography under obliquely incident SV waves[J]. Journal of Vibration and Shock,38(20):237–243 (in Chinese).
    [25] 唐晖,李小军,李亚琦. 2012. 自贡西山公园山脊地形场地效应分析[J]. 振动与冲击,31(8):74–79. doi: 10.3969/j.issn.1000-3835.2012.08.015
    [26] Tang H,Li X J,Li Y Q. 2012. Site effect of topograghy on ground motions of Xishan park of Zigong city[J]. Journal of Vibration and Shock,31(8):74–79 (in Chinese).
    [27] 王海云,谢礼立. 2010. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报,53(7):1631–1638. doi: 10.3969/j.issn.0001-5733.2010.07.014
    [28] Wang H Y,Xie L L. 2010. Effects of topography on ground motion in the Xishan park,Zigong city[J]. Chinese Journal of Geophysics,53(7):1631–1638 (in Chinese).
    [29] 王文才,尹志文,苏小芸,江志杰. 2020. 2018年陕西宁强5.3级地震强地面运动特征及局部场地效应分析[J]. 地震工程学报,42(6):1700–1705. doi: 10.3969/j.issn.1000-0844.2020.06.1700
    [30] Wang W C,Yin Z W,Su X Y,Jiang Z J. 2020. Characteristics of strong ground motion of the 2018 Ningqiang M5.3 earthquake in Shaanxi Province and local site response analysis[J]. China Earthquake Engineering Journal,42(6):1700–1705 (in Chinese).
    [31] 杨宇,李小军,贺秋梅. 2011. 自贡西山公园山脊场地地形和土层效应数值模拟[J]. 震灾防御技术,6(4):436–447. doi: 10.3969/j.issn.1673-5722.2011.04.009
    [32] Yang Y,Li X J,He Q M. 2011. Numerical simulation for site effect of ridge terrain and overlaying soil in Zigong Xishan park[J]. Technology for Earthquake Disaster Prevention,6(4):436–447 (in Chinese).
    [33] 于彦彦,丁海平,刘启方. 2017. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击,36(2):13–22.
    [34] Yu Y Y,Ding H P,Liu Q F. 2017. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation[J]. Journal of Vibration and Shock,36(2):13–22 (in Chinese).
    [35] 张宁,潘家琐,代登辉,高玉峰. 2021. 含峭壁V形峡谷对地震SH波散射的解析解[J]. 地球物理学报,64(3):896–906. doi: 10.6038/cjg2021O0041
    [36] Zhang N,Pan J S,Dai D H,Gao Y F. 2021. An analytical solution to the scattering of plane SH waves by a V-shaped canyon with cliffs[J]. Chinese Journal of Geophysics,64(3):896–906 (in Chinese).
    [37] 章小龙,李小军,周正华,陈国兴,彭小波. 2017. 三维复杂山谷地形SV波垂直输入地震反应分析[J]. 地球物理学报,60(7):2779–2790. doi: 10.6038/cjg20170723
    [38] Zhang X L,Li X J,Zhou Z H,Chen G X,Peng X B. 2017. The seismic response analysis of three-dimensional Canyon complex topography under incident SV seismic waves[J]. Chinese Journal of Geophysics,60(7):2779–2790 (in Chinese).
    [39] Boore D. 1972. Finite difference methods for seismic wave propagation in heterogeneous materials[J]. Methods Comput Phys:Adv Res Appl,11:1–37.
    [40] Gao Y F,Zhang N. 2013. Scattering of cylindrical SH waves induced by a symmetrical V-shaped canyon:Near-source topographic effects[J]. Geophys J Int,193(2):874–885. doi: 10.1093/gji/ggs119
    [41] Gao Y F,Zhang N,Li D Y,Liu H L,Cai Y Q,Wu Y X. 2012. Effects of topographic amplification induced by a U-shaped canyon on seismic waves[J]. Bull Seismol Soc Am,102(4):1748–1763. doi: 10.1785/0120110306
    [42] Huang H C,Chiu H C. 1995. The effect of canyon topography on strong ground motion at Feitsui damsite:Quantitative results[J]. Earthq Eng Struct Dyn,24(7):977–990. doi: 10.1002/eqe.4290240705
    [43] Liu Z X,Wang D,Liang J W,Wu F J,Wu C Q. 2018. The fast multi-pole indirect BEM for solving high-frequency seismic wave scattering by three-dimensional superficial irregularities[J]. Eng Anal Boun Elem,90:86–99. doi: 10.1016/j.enganabound.2018.02.009
    [44] Parolai S,Bindi D,Baumbach M,Grosser H,Milkereit C,Karakisa S,Zünbül S. 2004. Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake[J]. Bull Seismol Soc Am,94(3):1096–1108. doi: 10.1785/0120030086
    [45] Sanchez-Sesma F J. 1985. Diffraction of elastic SH-wave in wedges[J]. Bull Seism Soc Am,75(5):1435–1446.
    [46] Spudich P,Hellweg M,Lee W H K. 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge,California,earthquake:Implications for mainshock motions[J]. Bull Seismol Soc Am,86(1B):S193–S208. doi: 10.1785/BSSA08601BS193
    [47] Trifunac M D,Hudson D E. 1971. Analysis of the Pacoima dam accelerogram:San Fernando,California,earthquake of 1971[J]. Bull Seismol Soc Am,61(5):1393–1411.
    [48] Trifunac M D. 1973. Scattering of plane SH waves by a semi-cylindrical canyon[J]. Earthq Eng Struct Dyn,1(3):267–281.
    [49] Tsaur D H,Chang K H. 2008. An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon:Shallow case[J]. Geophys J Int,174(1):255–264. doi: 10.1111/j.1365-246X.2008.03788.x
    [50] Tsaur D H,Chang K H. 2009. Scattering of SH waves by truncated semicircular canyon[J]. J Eng Mech,135(8):862–870. doi: 10.1061/(ASCE)0733-9399(2009)135:8(862)
    [51] Tsaur D H,Chang K H,Hsu M S. 2010. An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon:Deep case[J]. Geophys J Int,183(3):1501–1511. doi: 10.1111/j.1365-246X.2010.04806.x
    [52] Yuan X M,Liao Z P. 1994. Scattering of plane SH waves by a cylindrical canyon of circular-arc cross-section[J]. Soil Dyn Earthq Eng,13(6):407–412. doi: 10.1016/0267-7261(94)90011-6
    [53] Zhang N,Gao Y F,Li D Y,Wu Y X,Zhang F. 2012a. Scattering of SH waves induced by a symmetrical V-shaped canyon:A unified analytical solution[J]. Earthq Eng Eng Vib,11(4):445–460. doi: 10.1007/s11803-012-0135-z
    [54] Zhang N,Gao Y F,Cai Y Q,Li D Y,Wu Y X. 2012b. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophys J Int,191(1):243–256. doi: 10.1111/j.1365-246X.2012.05604.x
    [55] Zhang N,Gao Y F,Pak R Y S. 2017. Soil and topographic effects on ground motion of a surficially inhomogeneous semi-cylindrical canyon under oblique incident SH waves[J]. Soil Dyn Earthq Eng,95:17–28. doi: 10.1016/j.soildyn.2017.01.037
    [56] Zhang N,Zhang Y,Gao Y F,Pak R Y S,Wu Y X,Zhang F. 2019. An exact solution for SH-wave scattering by a radially multilayered inhomogeneous semicylindrical canyon[J]. Geophys J Int,217(2):1232–1260. doi: 10.1093/gji/ggz083
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  20
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-08-31
  • 网络出版日期:  2022-01-14

目录

    /

    返回文章
    返回