与气压有关的地电场特征及机理研究

李学波 卫定军 李学涛 罗龙

李学波,卫定军,李学涛,罗龙. 2023. 与气压有关的地电场特征及机理研究. 地震学报,45(1):62−75 doi: 10.11939/jass.20210127
引用本文: 李学波,卫定军,李学涛,罗龙. 2023. 与气压有关的地电场特征及机理研究. 地震学报,45(1):62−75 doi: 10.11939/jass.20210127
Li X B,Wei D J,Li X T,Luo L. 2023. Feature and mechanism of geoelectric field related to atmospheric pressure. Acta Seismologica Sinica,45(1):62−75 doi: 10.11939/jass.20210127
Citation: Li X B,Wei D J,Li X T,Luo L. 2023. Feature and mechanism of geoelectric field related to atmospheric pressure. Acta Seismologica Sinica45(1):62−75 doi: 10.11939/jass.20210127

与气压有关的地电场特征及机理研究

doi: 10.11939/jass.20210127
基金项目: 宁夏自然科学基金(2021AAC03484)和地震科技星火计划(XH20065Y,XH20064)共同资助
详细信息
    通讯作者:

    李学波,本科,工程师,主要从事地震电磁观测与研究,e-mail:137020898@qq.com

  • 中图分类号: P319.11

Feature and mechanism of geoelectric field related to atmospheric pressure

  • 摘要: 使用宁夏四个地电台站记录的地电场数据,研究其变化特征、频谱特征、与区域气压变化的关系及测量方向与附近断裂走向的关系。研究结果显示:部分地电场具有日变化特征,同时也具有气压非周期性变化特征,这种特征与气压变化呈负相关,当场地裂隙优势方位与附近断裂带方位呈近似垂直或较大夹角时,测向与附近断裂走向近垂直的地电场与气压相关性较高。分析认为地电场具有气压非周期变化特征是因为测量位置基岩孔隙的渗透率与附近断裂裂缝的渗透率不同,流体渗流过程中气压系统变化引起的流体“窜流”所致。

     

  • 图  1  海原、固原地电台站分布及布极图

    Figure  1.  Distribution and electrodes layout of Haiyuan and Guyuan geoelectric station

    图  2  海原(a)、固原(b)地电场变化特征

    左侧为月变化;右侧为日变化

    Figure  2.  Variation characteristics of geoelectric field in Haiyuan (a) and Guyuan (b)

    Left column stands for monthly variations and right column stands for diurnal variations

    图  3  2019年10月海原(a)和固原(b)北南向/北东向地电场、气压、钻孔应变及温度曲线

    Figure  3.  Haiyuan (a) and Guyuan (b) north-south or north-east or geoelectric field,borehole strain,atmospheric pressure and temperature curves in October 2019

    图  4  2019年10月海原(a)、固原(b)地电场与气压整点值

    Figure  4.  Hourly value of geoelectric field and atmospheric pressure in Haiyuan (a) and Guyuan (b) in October 2019

    图  5  2018—2020年海原北南向(左)和固原北东向(右)地电场

    Figure  5.  Geoelectric field of Haiyuan north-south (left) and Guyuan north-east (right) from 2018 to 2020

    图  6  2018—2020年海原北南向地电场(a)、北南向浅层视电阻率(b)、温度(c)及气压(d)

    Figure  6.  The north-south geoelectric field (a),north-south shallow apparent resistivity (b),temperature (c) and pressure (d) in Haiyuan from 2018 to 2020

    图  7  海原北南向地电场频谱图

    Figure  7.  Spectrum of Haiyuan north-south geoelectric field

    图  8  石嘴山地电台和银川地电台的分布(a)及其2019年10月各测向地电场与气压整点值(b)

    Figure  8.  Distribution of Shizuishan and Yinchuan geoelectric station (a) and their hourly values of geoelectric field and atmospheric pressure in October 2019 (b)

    图  9  地电场测量方向、场地裂隙优势方位及附近断裂走向示意图

    Figure  9.  Schematic diagram of geoelectric field measurement direction,dominant orientation of site fissures and nearby fault strike

    图  10  含裂缝和孔隙的双重介质示意图(a)、剖面图(b)及地电场测量方向与断裂走向关系示意图(c)

    Figure  10.  Schematic diagram of dual medium with fractures and pores (a),profile (b) and relationship between geoelectric field measuring direction and fault (c)

    表  1  海原和固原各测向地电场与气压的月相关系数

    Table  1.   Monthly correlation coefficient between geoelectric field and atmospheric pressure in Haiyuan and Guyuan

    年-月相关系数 年-月相关系数
    海原固原海原固原
    北南东西北南东西北东北南东西北南东西北东
    2018-01 −0.66 0.00 −0.36 −0.52 0.67 2019-01 −0.83 −0.11 −0.42 −0.63 0.75
    2018-02 −0.77 0.12 −0.29 −0.07 0.64 2019-02 −0.76 −0.04 −0.22 −0.26 0.62
    2018-03 −0.75 −0.21 −0.21 −0.62 0.52 2019-03 −0.73 −0.02 −0.27 −0.38 0.26
    2018-04 −0.86 −0.16 −0.31 −0.56 0.19 2019-04 −0.71 −0.03 −0.25 −0.06 0.34
    2018-05 −0.77 −0.19 −0.32 −0.59 0.57 2019-05 −0.83 0.23 −0.41 −0.54 0.42
    2018-06 −0.76 0.10 −0.08 −0.46 −0.01 2019-06 −0.73 −0.07 −0.22 −0.21 0.46
    2018-07 −0.58 −0.06 −0.30 −0.19 0.6 2019-07 −0.45 0.02 −0.06 −0.03 0.47
    2018-08 −0.89 0.00 −0.35 −0.55 0.82 2019-08 −0.69 0.13 −0.02 −0.39 0.44
    2018-09 −0.54 −0.05 −0.18 −0.65 −0.06 2019-09 −0.61 0.26 −0.14 −0.66 0.57
    2018-10 −0.75 0.09 −0.24 −0.78 0.3 2019-10 −0.82 0.25 −0.33 −0.43 0.74
    2018-11 −0.81 0.17 −0.41 −0.58 0.7 2019-11 −0.83 0.35 −0.61 −0.36 0.81
    2018-12 −0.65 0.17 −0.43 −0.72 0.81 2019-12 −0.76 0.63 −0.50 −0.78 0.83
    下载: 导出CSV

    表  2  海原和固原各测向地电场与气温的月相关系数

    Table  2.   Monthly correlation coefficient between geoelectric field and temperature in Haiyuan and Guyuan

    年-月相关系数 年-月相关系数
    海原固原海原固原
    北南东西北南东西北东北南东西北南东西北东
    2018-01 0.46 0.15 0.20 0.39 −0.47 2019-01 0.35 0.25 0.30 0.27 −0.42
    2018-02 0.48 −0.22 0.08 −0.28 −0.48 2019-02 0.35 −0.01 0.14 0.20 −0.24
    2018-03 0.33 −0.21 0.11 −0.15 −0.33 2019-03 0.33 −0.17 −0.06 −0.27 −0.45
    2018-04 0.50 −0.07 0.10 0.27 −0.06 2019-04 0.34 −0.06 0.00 −0.13 −0.46
    2018-05 0.38 −0.15 −0.02 0.16 −0.42 2019-05 0.28 −0.01 0.03 0.05 −0.47
    2018-06 0.09 −0.30 −0.22 0.20 −0.04 2019-06 0.12 −0.17 −0.25 −0.02 −0.48
    2018-07 0.00 −0.27 0.09 −0.16 −0.23 2019-07 0.00 −0.23 0.13 0.27 −0.49
    2018-08 0.17 −0.08 −0.22 0.25 −0.41 2019-08 0.34 −0.25 0.01 0.25 −0.50
    2018-09 0.20 −0.01 −0.18 0.47 0.07 2019-09 0.32 −0.22 0.08 0.28 −0.51
    2018-10 0.20 −0.04 0.03 0.01 −0.30 2019-10 0.23 −0.07 0.10 0.14 −0.52
    2018-11 0.36 0.01 0.26 0.08 −0.50 2019-11 0.40 −0.07 0.22 0.47 −0.53
    2018-12 0.52 −0.11 0.32 0.29 −0.57 2019-12 0.40 −0.10 0.29 0.06 −0.54
    下载: 导出CSV

    表  3  2019年7—12月海原、固原、银川和石嘴山电台各测向地电场与气压相关系数以及各测向与附近断裂走向的夹角

    Table  3.   Correlation coefficients between geoelectric field and atmospheric pressure in Haiyuan,Guyuan,Shizuishan and Yinchuan geoelectric stations from July to December in 2019 and the angles between each measuring direction and the strike of nearby faults

    台站测向相关系数夹角/°
    7月8月9月10月11月12月平均值
    海原 NS 0.45 0.69 0.61 0.82 0.83 0.76 0.69 70
    EW 0.02 0.13 0.26 0.25 0.35 0.63 0.27 20
    固原 NS 0.06 0.02 0.14 0.34 0.61 0.50 0.28 40
    EW 0.03 0.39 0.66 0.44 0.36 0.78 0.44 50
    NE 0.47 0.44 0.57 0.75 0.81 0.83 0.65 85
    银川 NS 0.11 0.32 0.01 0.03 0.02 0.50 0.17 0
    EW 0.13 0.37 0.67 0.21 0.19 0.47 0.34 90
    NE 0.01 0.40 0.31 0.06 0.20 0.04 0.17 45
    石嘴山 NS 0.25 0.25 0.51 0.10 0.30 0.43 0.31 15
    EW 0.19 0.27 0.70 0.56 0.28 0.56 0.43 75
    NW 0.12 0.68 0.66 0.43 0.53 0.61 0.51 60
    下载: 导出CSV

    表  4  各台站主压应力方向、裂隙优势方位角及各测向与附近断裂走向的夹角

    Table  4.   Principal compressive stress direction and dominant fracture azimuth of each station and the angle between each measuring direction and the strike of nearby faults

    主压应力方向/°裂隙优势方位角/°附近断裂走向/°地电场测向与附近断裂走向夹角/°
    NSEWNE
    海原 60 71 290 70 20
    固原 60 12 320 40 50 85
    银川 42 16 0 0 90 45
    石嘴山 26 28 15 15 75 60 (NW)
    下载: 导出CSV
  • 安张辉,杜学彬,范莹莹,刘君,谭大诚,崔腾发,陈军营,王建军. 2015. 2013年芦山MS7.0地震前地电场变化特征研究[J]. 地震,35(1):91–99. doi: 10.3969/j.issn.1000-3274.2015.01.010
    An Z H,Du X B,Fan Y Y,Liu J,Tan D C,Cui T F,Chen J Y,Wang J J. 2015. Characteristics of geo-electric field changes before the 2013 Lushan MS7.0 earthquake[J]. Earthquake,35(1):91–99 (in Chinese).
    柴炽章, 孟广魁, 马贵仁. 2011. 银川市活动断层探测与地震危险性评价[M]. 北京: 科学出版社: 173–179.
    Chai C Z, Meng G K, Ma G R. 2011. Active Fault Surveying and Seismic Hazard Evolution in Yinchuan Basin[M]. Beijing: Science Press: 173–179 (in Chinese).
    陈建业,杨晓松,党嘉祥,何昌荣,周永胜,马胜利. 2011. 汶川地震断层带结构及渗透率[J]. 地球物理学报,54(7):1805–1816. doi: 10.3969/j.issn.0001-5733.2011.07.014
    Chen J Y,Yang X S,Dang J X,He C R,Zhou Y S,Ma S L. 2011. Internal structure and permeability of Wenchuan earthquake fault[J]. Chinese Journal of Geophysics,54(7):1805–1816 (in Chinese).
    程林松. 2011. 高等渗流力学[M]. 北京: 石油工业出版社: 168–169.
    Cheng L S. 2011. Advanced Mechanics of Seepage in Porous Media[M]. Beijing: Petroleum Industry Press: 168–169 (in Chinese).
    崔笃信,王庆良,胡亚轩,王文萍,朱桂芝. 2009. 用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报,31(5):516–525. doi: 10.3321/j.issn:0253-3782.2009.05.004
    Cui D X,Wang Q L,Hu Y X,Wang W P,Zhu G Z. 2009. Inversion of GPS data for slip rates and locking depths of the Haiyuan fault[J]. Acta Seismologica Sinica,31(5):516–525 (in Chinese).
    崔腾发,杜学彬,叶青,陈军营,王建军,安张辉,范莹莹,刘君. 2013. 中国大陆经纬链地电场日变化[J]. 地球物理学报,56(7):2358–2368. doi: 10.6038/cjg20130722
    Cui T F,Du X B,Ye Q,Chen J Y,Wang J J,An Z H,Fan Y Y,Liu J. 2013. The diurnal variation of geo-electric field along the longitude and latitude chains in China mainland[J]. Chinese Journal of Geophysics,56(7):2358–2368 (in Chinese).
    杜鹏. 2010. 贺兰山东麓断裂晚第四纪活动特征和古地震研究[D]. 北京: 中国地质大学(北京): 13.
    Du P. 2010. Studying the Active Characteristics and Paleoearthquake of the Eastern Piedmont Fault of Helan Mountains in the Late Quaternary[D]. Beijing: China University of Geosciences (Beijing): 13 (in Chinese).
    范莹莹,杜学彬,Zlotnicki J,谭大诚,刘君,安张辉,陈军营,郑国磊,解滔. 2010. 汶川MS8.0大震前的电磁现象[J]. 地球物理学报,53(12):2887–2898. doi: 10.3969/j.issn.0001-5733.2010.12.012
    Fan Y Y,Du X B,Zlotnicki J,Tan D C,Liu J,An Z H,Chen J Y,Zheng G L,Xie T. 2010. The electromagnetic phenomena before the MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics,53(12):2887–2898 (in Chinese).
    傅承义, 陈运泰, 祁贵仲. 1985. 地球物理学基础[M]. 北京: 科学出版社: 447.
    Fu C Y, Chen Y T, Qi G Z. 1985. Geophysical Fundamentals[M]. Beijing: Science Press: 447 (in Chinese).
    国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社: 234–855.
    Institute of Geology, China Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 234–855 (in Chinese).
    黄清华,刘涛. 2006. 新岛台地电场的潮汐响应与地震[J]. 地球物理学报,49(6):1745–1754. doi: 10.3321/j.issn:0001-5733.2006.06.022
    Huang Q H,Liu T. 2006. Earthquakes and tide response of geoelectric potential field at the Niijima station[J]. Chinese Journal of Geophysics,49(6):1745–1754 (in Chinese).
    来贵娟. 2014. 井水位对气压和潮汐的响应特征与机理研究[D]. 北京: 中国地震局地球物理研究所: 5.
    Lai G J. 2014. The Response Characteristics and Mechanism of Groundwater Level to Barometric Pressure and Earth Tides[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 5 (in Chinese).
    李金铭. 2005. 地电场与电法勘探[M]. 北京: 地质出版社: 178.
    Li J M. 2005. Geoelectric Field and Electric Prospecting[M]. Beijing: Geological Publishing House: 178 (in Chinese).
    李学波. 2022. 基于不同类型电极的地电场变化与活动断裂关系[J]. 大地测量与地球动力学,42(2):119–124. doi: 10.14075/j.jgg.2022.02.003
    Li X B. 2022. Relationship between geoelectric field variation and active faults based on different types of electrodes[J]. Journal of Geodesy and Geodynamics,42(2):119–124 (in Chinese).
    刘明军,李松林,张先康,樊计昌,宋占龙. 2004. 海原断裂带断层通道波观测与破碎带宽度[J]. 物探与化探,28(6):549–552. doi: 10.3969/j.issn.1000-8918.2004.06.020
    Liu M J,Li S L,Zhang X K,Fan J C,Song Z L. 2004. The observation of trapped waves and the width of the shattered zone in Haiyuan fault zone[J]. Geophysical and Geochemical Exploration,28(6):549–552 (in Chinese).
    刘盛东,王勃,周冠群,杨胜伦,陈明江. 2009. 基于地下水渗流中地电场响应的矿井水害预警试验研究[J]. 岩石力学与工程学报,28(2):267–272.
    Liu S D,Wang B,Zhou G Q,Yang S L,Chen M J. 2009. Experimental research on mine floor water hazard early warning based on response of geoelectric field in groundwater seepage[J]. Chinese Journal of Rock Mechanics and Engineering,28(2):267–272 (in Chinese).
    罗少聪. 2003. 大气负荷效应问题研究[D]. 北京: 中国科学院测量与地球物理研究所: 19.
    Luo S C, 2003. Study of the Loading Effects of the Atmospheric Pressure[D]. Beijing: Institute of Geodesy and Geophysics, Chinese Academy of Sciences: 19 (in Chinese).
    庞亚瑾,杨少华,李海兵,程惠红,石耀霖. 2019. 青藏高原东北缘海原—六盘山断裂带现今地壳应力环境的数值分析[J]. 岩石学报,035(006):1848–1856.
    Pang Y J,Yang S H,Li H B,Cheng H H,Shi Y L. 2019. Numerical modeling of current crustal stress state in Haiyuan−Liupanshan fault system of NE Tibet[J]. Acta Petrologica Sinica,35(6):1848–1856 (in Chinese). doi: 10.18654/1000-0569/2019.06.13
    乔鑫,屈春燕,单新建,李彦川,朱传华. 2019. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质,41(6):1481–1496. doi: 10.3969/j.issn.0253-4967.2019.06.011
    Qiao X,Qu C Y,Shan X J,Li Y C,Zhu C H. 2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology,41(6):1481–1496 (in Chinese).
    孙正江, 王华俊. 1984. 地电概论[M]. 北京: 地震出版社: 23–28.
    Sun Z J, Wang H J. 1984. Introduction on the Geoelctric Subject[M]. Beijing: Seismological Press: 23–28 (in Chinese).
    谭大诚,赵家骝,席继楼,杜学彬,徐建明. 2010. 潮汐地电场特征及机理研究[J]. 地球物理学报,53(3):544–555.
    Tan D C,Zhao J L,Xi J L,Du X B,Xu J M. 2010. A study on feature and mechanism of the tidal geoelectrical field[J]. Chinese Journal of Geophysics,53(3):544–555 (in Chinese).
    谭大诚,王兰炜,赵家骝,席继楼,刘大鹏,于华,陈军营. 2011. 潮汐地电场谐波和各向波形的影响要素[J]. 地球物理学报,54(7):1842–1853. doi: 10.3969/j.issn.0001-5733.2011.07.018
    Tan D C,Wang L W,Zhao J L,Xi J L,Liu D P,Yu H,Chen J Y. 2011. Influence factors of harmonic waves and directional waveforms of tidal geoelectrical field[J]. Chinese Journal of Geophysics,54(7):1842–1853 (in Chinese).
    谭大诚,辛建村,王建军,范莹莹,王玮铭. 2019. 大地电场岩体裂隙模型的应用基础与震例解析[J]. 地球物理学报,62(2):558–571. doi: 10.6038/cjg2019L0584
    Tan D C,Xin J C,Wang J J,Fan Y Y,Wang W M. 2019. Application foundation and earthquake case analysis of the telluric field rock crack model[J]. Chinese Journal of Geophysics,62(2):558–571 (in Chinese).
    汤吉,詹艳,王立凤,董泽义,赵国泽,徐建郎. 2010. 汶川地震强余震的电磁同震效应[J]. 地球物理学报,53(3):526–534.
    Tang J,Zhan Y,Wang L F,Dong Z Y,Zhao G Z,Xu J L. 2010. Electromagnetic coseismic effect associated with aftershock of Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,53(3):526–534 (in Chinese).
    王兰炜,张世中,康云生,安海静. 2011. 垂直电场观测试验及数据初步分析[J]. 地震学报,33(4):461–470. doi: 10.3969/j.issn.0253-3782.2011.04.006
    Wang L W,Zhang S Z,Kang Y S,An H J. 2011. Experimental observation and preliminary data analysis of vertical geo-electric field[J]. Acta Seismologica Sinica,33(4):461–470 (in Chinese).
    席继楼,宋艳茹,胡明朝,刘超,徐学恭,尚先旗. 2013. 全方位自然电场观测方法和观测技术研究[J]. 地震学报,35(1):94–107. doi: 10.3969/j.issn.0253-3782.2013.01.010
    Xi J L,Song Y R,Hu M Z,Liu C,Xu X G,Shang X Q. 2013. Research on the observation methods and techniques of omni-directional spontaneous electric field[J]. Acta Seismologica Sinica,35(1):94–107 (in Chinese).
    徐文耀,李卫东. 1993. Sq发电机电流的UT变异性及其地面磁场的重建[J]. 地球物理学报,36(4):417–427. doi: 10.3321/j.issn:0001-5733.1993.04.002
    Xu W Y,Li W D. 1993. Ut-variability of the Sq dynamo current and its ground magnetic field reconstruction[J]. Chinese Journal of Geophysics,36(4):417–427 (in Chinese).
    叶青,杜学彬,周克昌,李宁,马占虎. 2007. 大地电场变化的频谱特征[J]. 地震学报,29(4):382–390. doi: 10.3321/j.issn:0253-3782.2007.04.005
    Ye Q,Du X B,Zhou K C,Li N,Ma Z H. 2007. Spectrum characteristics of geoelectric field variation[J]. Acta Seismologica Sinica,29(4):382–390 (in Chinese).
    曾宪伟,莘海亮,陈春梅,蔡新华. 2015. 利用小震震源机制解研究宁夏南部及邻区构造应力场[J]. 地震研究,38(1):51–57.
    Zeng X W,Xin H L,Chen C M,Cai X H. 2015. Characteristics research of tectonic stress in southern Ningxia and its adjacent areas by focal mechanisms of small earthquakes[J]. Journal of Seismological Research,38(1):51–57 (in Chinese).
    张学民,翟彦忠,郭学增,郭建芳. 2007. 远震前的地电场潮汐波异常[J]. 地震学报,29(1):48–58. doi: 10.3321/j.issn:0253-3782.2007.01.006
    Zhang X M,Zhai Y Z,Guo X Z,Guo J F. 2007. Tidal wave anomalies of geoelectrical field before remote earthquakes[J]. Acta Seismologica Sinica,29(1):48–58 (in Chinese).
    赵旭东,杜爱民,徐文耀,洪明华,刘立波,魏勇,王程功. 2008. Sq电流系午前午后不对称性现象的来源[J]. 地球物理学报,51(3):643–649. doi: 10.3321/j.issn:0001-5733.2008.03.005
    Zhao X D,Du A M,Xu W Y,Hong M H,Liu L B,Wei Y,Wang C G. 2008. The origin of the prenoon-postnoon asymmetry for Sq current system[J]. Chinese Journal of Geophysics,51(3):643–649 (in Chinese).
    赵知军,刘秀景. 1990. 宁夏及其邻区地震活动带与小区域构造应力场[J]. 地震地质,12(1):31–46.
    Zhao Z J,Liu X J. 1990. Seismic activity and local tectonic stress field in Ningxia and nearby regions[J]. Seismology and Geology,12(1):31–46 (in Chinese).
    Lanzerotti L J,Sayres D S,Medford L V,Maclennan C G,Lepping R P,Szabo A. 2000. Response of large-scale geoelectric fields to identified interplanetary disturbances and the equatorial ring current[J]. Advances in Space Research,26(1):21–26. doi: 10.1016/S0273-1177(99)01021-2
    Mizoguchi K,Hirose T,Shimamoto T,Fukuyama E. 2008. Internal structure and permeability of the Nojima fault,southwest Japan[J]. J Struct Geol,30(4):513–524.
    Pirjola R. 2005. Effects of space weather on high-latitude ground systems[J]. Advances in Space Research,36(12):2231–2240. doi: 10.1016/j.asr.2003.04.074
    Ren H X,Wen J,Huang Q H,Chen X F. 2015. Electrokinetic effect combined with surface-charge assumption:A possible generation mechanism of co-seismic EM signals[J]. Geophys J Int,200(2):835–848.
    Uyeda S. 1998. VAN method of short-term earthquake prediction shows promise[J]. Eos Transactions American Geophysical Union,79(47):573–580.
    Varotsos P,Alexopoulos K. 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes:I[J]. Tectonophysics,110(1/2):73–98. doi: 10.1016/0040-1951(84)90059-3
    Zhang P Z,Min W,Deng Q D,Mao F Y. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault,northwestern China[J]. Science in China Series D:Earth Science,48(3):364–375.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  16
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-25
  • 修回日期:  2022-05-06
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回