Extraction of seismic damage information of buildings from three-dimensional images of oblique photography based on multi-scale segmentation and deep learning
-
摘要: 采用多尺度分割和深度学习相结合的方法对震后倾斜摄影三维影像建筑物震害信息进行提取,获取建筑物的屋顶和墙体多种破坏信息。以2017年九寨沟MS7.0地震后倾斜摄影三维影像为例,依据三维影像建筑物顶面和墙体等进行样本的多尺度分割,样本分为完好建筑物面、破坏建筑物面、其它地物和背景等三类,选取211个100×100像素的样本集对卷积神经网络模型进行训练,采用训练后的模型提取灾区千古情风景区和漳扎镇小学的建筑物震害信息,并将提取结果与目视解译结果进行精度对比,结果显示:破坏建筑物面提取精度分别为65.5%和71.1%,总体分类精度分别为82.1%和84.1%,卡帕(Kappa)系数分别为68.7%和64.9%,表明该方法在倾斜摄影三维影像建筑物震害提取方面具有一定的优势。Abstract: The method of combining multi-scale segmentation and deep learning is used to extract the seismic damage information of buildings from three-dimensional images of oblique photography after an earthquake. In this way, the comprehensive damage information of the roof and wall of the building is obtained. Taking the 2017 MS7.0 Jiuzhaigou earthquake as an example, firstly, based on the three-dimensional image of the roof and wall of the building, the multi-scale segmentation of samples are divided into three categories: intact building surface, damaged building surface, other ground objects and background. Secondly, 211 sample set with 100×100 pixel are selected to train the neural convolutional network model. The trained model is used to extract the seismic damage information of buildings in Qianguqing scenic spot and Zhangzha primary school. Finally, the accuracy of the extracted results is compared with the visual interpretation results. The results show that the extraction accuracy of damaged building surface is 65.5% and 71.1% respectively, the overall classification accuracy is 82.1% and 84.1% respectively, and the Kappa coefficient is 68.7% and 64.9% respectively. The result indicates that this method has certain advantages in seismic damage extraction of buildings from three-dimensional images of oblique photography.
-
图 6 千古情风景区(a)和漳扎镇小学(b)的建筑物提取结果
红色代表完好建筑物面,蓝色代表破坏建筑物面,黑色代表其它地物及背景
Figure 6. Extraction results of seismic damage of buildings in Qianguqing scenic spot (a) and Zhangzha primary school (b)
Red represents the intact building surface,blue represents the damaged building surface and black represents other ground objects and backgrounds
表 1 分类样本集的选取
Table 1. Selection of classification sample sets
标签 样本名称 样本图片 样本个数 1 完好建筑物面 107 2 破坏建筑物面 68 3 其它地物及背景 36 表 2 千古情风景区的建筑物深度学习和目视解译提取结果的混淆矩阵
Table 2. Confusion matrix of deep learning and artificial visual extraction results of the buildings in Qianguqing scenic spot
预测真实 破坏建筑物面数 完好建筑物面数 其它地物及背景面数 合计 正确率 破坏建筑物面数 53 436 20 084 8 007 81 527 65.5% 完好建筑物面数 23 447 131 605 32 258 187 310 70.3% 其它地物及背景数 5 007 19 001 309 974 333 982 92.8% 合计 81 890 170 690 350 239 602 819 表 3 漳扎镇小学及其周边的深度学习和人工目视解译提取结果混淆矩阵
Table 3. Confusion matrix of deep learning and manual visual extraction results of the buildings in Zhangzha primary school and it’s vicinity
预测真实 破坏建筑物面数 完好建筑物面数 其它地物及背景面数 合计 正确率 破坏建筑物面数 61 445 20 007 5 003 86 445 71.1% 完好建筑物面数 3 668 165 570 44 093 213 331 77.6% 其它地物及背景数 4 008 96 971 688 942 789 921 87.2% 合计 69 121 282 548 738 038 1 089 697 -
陈梦,王晓青. 2019. 全卷积神经网络在建筑物震害遥感提取中的应用研究[J]. 震灾防御技术,14(4):810–820. doi: 10.11899/zzfy20190412 Chen M,Wang X Q. 2019. The study on extraction of seismic damage of buildings from remote sensing image based on fully convolutional neural network[J]. Technology for Earthquake Disaster Prevention,14(4):810–820 (in Chinese). 范荣双,陈洋,徐启恒,王竞雪. 2019. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报,48(1):34–41. doi: 10.11947/j.AGCS.2019.20170638 Fan R S,Chen Y,Xu Q H,Wang J X. 2019. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica,48(1):34–41 (in Chinese). 冯丽英. 2017. 基于深度学习技术的高分辨率遥感影像建设用地信息提取研究[D]. 杭州: 浙江大学: 22–39. Feng L Y. 2017. Research on Construction Land Information Extraction From High Resolution Images With Deep Learning Technology[D]. Hangzhou: Zhejiang University: 22–39 (in Chinese). 高扬. 2018. 基于卷积神经网络的高分辨率遥感影像建筑物提取[D]. 南京: 南京大学: 37–51. Gao Y. 2018. Building Extraction From High Resolution Remote Sensing Images Based on Convolutional Neural Network[D]. Nanjing: Nanjing University: 37–51 (in Chinese). 荆帅军,帅向华,甄盟. 2019. 基于无人机倾斜影像的三维建筑物震害精细信息提取[J]. 地震学报,41(3):366–376. Jing S J,Shuai X H,Zhen M. 2019. Fine information extraction of 3D building seismic damage based on unmanned aerial vehicle oblique images[J]. Acta Seismologica Sinica,41(3):366–376 (in Chinese). 李强. 2018. 多模式遥感数据地震应急关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所: 33–49. Li Q. 2018. Study on Key Technology of Earthquake Emergency Using Multi-Mode Remote Sensing Data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 33–49 (in Chinese). 李胜军. 2013. 基于倾斜航空影像的建筑物结构性损毁评估方法研究[D]. 成都: 西南交通大学: 12–20. Li S J. 2013. The Research of Building Structural Damage Assessment Based on Airborne Oblique Images[D]. Chengdu: Southwest Jiaotong University: 12–20 (in Chinese). 史路路. 2018. 基于卷积神经网络的遥感影像土地覆盖分类研究[D]. 北京: 中国科学院遥感与数字地球研究所: 14–18. Shi L L. 2018. Remote Sensing Images Land Cover Classification Based on Convolutional Neural Network[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences: 14–18 (in Chinese). 吴剑,陈鹏,刘耀林,王静. 2013. 震害损毁建筑物高分辨率遥感信息提取方法[J]. 地理与地理信息科学,29(3):35–38. Wu J,Chen P,Liu Y L,Wang J. 2013. Method of earthquake collapsed building information extraction based on high-resolution remote sensing[J]. Geography and Geo-Information Science,29(3):35–38 (in Chinese). 赵妍,张景发,姚磊华. 2016. 基于面向对象的高分辨率遥感建筑物震害信息提取与评估[J]. 地震学报,38(6):942–951. doi: 10.11939/jass.2016.06.014 Zhao Y,Zhang J F,Yao L H. 2016. Seismic damage information extraction and evaluation of buildings with high resolution remote sensing based on object-oriented method[J]. Acta Seismologica Sinica,38(6):942–951 (in Chinese). 周阳,张云生,陈斯飏,邹峥嵘,朱耀晨,赵芮雪. 2019. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感,31(2):44–50. Zhou Y,Zhang Y S,Chen S Y,Zou Z R,Zhu Y C,Zhao R X. 2019. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land and Resources,31(2):44–50 (in Chinese). Gerke M,Kerle N. 2011. Automatic structural seismic damage assessment with airborne oblique pictometry© imagery[J]. Photogramm Eng Remote Sens,77(9):885–898. doi: 10.14358/PERS.77.9.885 Hu Z W,Li Q Q,Zou Q,Zhang Q,Wu G F. 2016. A bilevel scale-sets model for hierarchical representation of large remote sensing images[J]. IEEE Trans Geosci Remote Sens,54(12):7366–7377. doi: 10.1109/TGRS.2016.2600636 Lecun Y,Bottou L,Bengio Y,Haffner P. 1998. Gradient-based learning applied to document recognition[J]. Proc IEEE,86(11):2278–2324. doi: 10.1109/5.726791 Sun G Y,Huang H,Zhang A Z,Li F,Zhao H M,Fu H. 2019. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images[J]. Remote Sens,11(3):227. doi: 10.3390/rs11030227 Vetrivel A,Gerke M,Kerle N,Nex F,Vosselman G. 2018. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images,and multiple-kernel-learning[J]. ISPRS J Photogramm Remote Sens,140:45–59. Yuan J Y. 2016. Automatic building extraction in aerial scenes using convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,40(11):2793–2798. -