近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响

韩淼 蒋金卫 杜红凯 赵鸣鹤

韩淼,蒋金卫,杜红凯,赵鸣鹤. 2022. 近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响. 地震学报,44(5):891−902 doi: 10.11939/jass.20220129
引用本文: 韩淼,蒋金卫,杜红凯,赵鸣鹤. 2022. 近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响. 地震学报,44(5):891−902 doi: 10.11939/jass.20220129
Han M,Jiang J W,Du H K,Zhao M H. 2022. Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system. Acta Seismologica Sinica,44(5):891−902 doi: 10.11939/jass.20220129
Citation: Han M,Jiang J W,Du H K,Zhao M H. 2022. Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system. Acta Seismologica Sinica44(5):891−902 doi: 10.11939/jass.20220129

近断层地震动脉冲特性对设备-结构耦合隔震体系响应的影响

doi: 10.11939/jass.20220129
基金项目: 国家“十三五”重点研发计划(2019YFC1509500)和北京未来城市设计高精尖创新中心课题(UDC2019032424)共同资助
详细信息
    作者简介:

    韩淼,博士,教授,主要从事工程结构抗震减灾及抗震性能研究,e-mail:hanmiao@bucea.edu.cn

    通讯作者:

    杜红凯,博士,副教授,主要从事工程结构隔震与减震研究,e-mail:duhongkai@bucea.edu.cn

  • 中图分类号: TU352.1

Effect of pulse characteristics of near-fault ground motions on the response of equipment-structure coupled isolation system

  • 摘要: 基于设备−结构耦合隔震体系模型,选取了50条近断层脉冲型地震波,以脉冲周期与结构基本周期比TP/T=1为分界线,分析了周期比和脉冲能量对结构响应的影响,并对穿零次数小于等于5的隔震层位移比与周期比和脉冲能量的关系进行了拟合。结果表明:脉冲特性对结构的影响主要与周期比TP/T和脉冲能量有关,同时也需考虑速度脉冲对应的加速度曲线穿零次数的影响;此外,设备响应与顶层楼面加速度直接相关,与近断层地震动的脉冲特性则无明显相关性。

     

  • 图  1  五层钢框架结构

    Figure  1.  Five-storey steel frame structure

    图  2  有限元分析模型

    Figure  2.  Finite element calculation model

    图  3  不同PGA时近断层地震作用下的隔震层最大位移对比

    (a) 近断层脉冲型地震动作用;(b) 近断层非脉冲型地震动作用

    Figure  3.  Comparison of maximum displacement of isolation layer under near-fault ground motions with different PGAs

    (a) Near-fault pulse-like ground motions; (b) Near-fault non-pulse-like ground motions

    图  4  不同PGA时近断层地震作用下的层间最大位移

    Figure  4.  Maximum interlayer displacements under near-fault ground motions with different PGAs

    图  5  不同PGA的近断层脉冲型地震动作用下设备最大位移对比

    Figure  5.  Comparison of maximum equipment displacement under near-fault pulse-like ground motions with different PGAs

    图  6  不同PGA的近断层脉冲型地震动作用下顶层最大加速度对比

    Figure  6.  Comparison of maximum acceleration of top floor under near-fault pulse-like ground motions with different PGAs

    图  7  隔震层最大位移与速度脉冲的三种对应关系

    (a) 最大位移处无速度脉冲(32号地震波);(b) 最大位移处不对应最大速度脉冲(28号地震波);(c) 最大位移处对应最大速度脉冲(10号地震波)

    Figure  7.  Three correspondences between the maximum displacement of isolation layer and the velocity pulse

    (a) No velocity pulse corresponds to the maximum displacement (seismic wave No.32);(b) Maximum velocity pulse does not correspond to the maximum displacement (seismic wave No.28);(c) Maximum velocity pulse corresponds to the maximum displacement (seismic wave No.10)

    图  8  最大位移与加速度脉冲的关系(32号地震波)

    Figure  8.  Maximum displacement of isolation layer versus acceleration pulse (seismic wave No. 32)

    图  9  隔震层位最大移与周期比TP/T (a)和脉冲能量E (b)的关系

    Figure  9.  Displacement of isolation layer versus period ratio TP/T (a) and pulse energy E (b)

    图  10  穿零次数为1 (a)和9 (b)时速度脉冲对应的加速度曲线

    Figure  10.  Acceleration curves corresponding to velocity pulse with zero-crossing times 1 (a) and 9 (b)

    图  11  设备周期为0.25 s时设备位移与顶层楼面加速度时程的位移谱的关系

    Figure  11.  Relationship between equipment displacement and displacement spectrum of top floor acceleration time histories when the period of the equipment is 0.25 s

    图  12  顶层楼面时程(a)与地震波时程(b)(23号地震波)

    Figure  12.  Top floor time histories (a) and seismic wave time histories (b) (seismic wave No.23)

    表  1  缩尺模型与原型的相似关系

    Table  1.   Similarity relation of single-span model and prototype structure

    类型物理量相似关系相似比类型物理量相似关系相似比
    材料特性 应力 $ {S_{ E}} $ 1 荷载特性 面荷载 ${S_{ E}}$ 1
    应变 1 1 加速度 1 1
    弹性模量 ${S_{ E} }$ 1 速度 ${S^{1/2}_{ {\rm{L} } } }$ 1:2
    泊松比 1 1 重力加速度 1 1
    几何特性 长度 ${S_{ {\rm{L}}} }$ 1:4 阻尼系数 ${S_{ E} }{S^{3/2}_{ {\rm{L} } } }$ 1:8
    位移 ${S_{ {\rm{L}}} }$ 1:4 时间 ${S^{1/2}_{ {\rm{L} } } }$ 1:2
    频率 ${S^{ - 1/2} _{ {\rm{L} } } }$ 2
    注:表中SE为弹性模量相似常数,SL为长度相似常数。
    下载: 导出CSV

    表  2  原型结构和缩尺模型的前三阶自振周期

    Table  2.   The first three natural vibration periods of prototype structure and single-span model

    模型自振周期/s
    第一阶第二阶第三阶
    双向单跨原型0.86 0.860.49
    缩尺模型0.440.440.24
    下载: 导出CSV

    表  3  本研究选取的50条近断层脉冲型地震波

    Table  3.   The 50 near-fault pulse-like seismic waves selected for this study

    序号PEER记录编号分量地震名称发震时间MW脉冲周期/s
    11050FNNorthridge-0119946.690.50
    2615FNWhittier Narrows-0119875.990.79
    3496FPNahanni,Canada19856.760.81
    4568FNSan Salvador19865.800.86
    51051FNNorthridge-0119946.690.90
    6828FPCape Mendocino19927.010.90
    71602FPDuzce,Turkey19997.140.91
    8569FPSan Salvador19865.801.00
    9451FPMorgan Hill19846.191.10
    10459FNMorgan Hill19846.191.20
    11150FNCoyote Lake19795.741.20
    12765FNLoma Prieta19896.931.20
    131202FNChi-Chi,Taiwan,China19997.621.40
    14529FNN. Palm Springs19866.061.40
    151119FNKobe,Japan19956.901.40
    1677FNSan Fernando19716.611.60
    171120FNKobe,Japan19956.901.60
    18766FNLoma Prieta19896.931.70
    191013FNNorthridge-0119946.691.70
    20763FNLoma Prieta19896.931.80
    21568FPSan Salvador19865.801.80
    22803FNLoma Prieta19896.931.90
    23173FPImperial Valley-0619796.532.00
    24722FPSuperstition Hills-0219876.542.10
    25821FPErzican,Turkey19926.932.20
    261045FPNorthridge-0119946.692.20
    271044FNNorthridge-0119946.692.20
    28159FNImperial Valley-0619796.532.30
    29723FNSuperstition Hills-0219876.542.30
    30158FNImperial Valley-0619796.532.40
    31721FNSuperstition Hills-0219876.542.40
    321045FNNorthridge-0119946.692.40
    331182FNChi-Chi,Taiwan,China19997.622.60
    34821FNErzican,Turkey19926.932.70
    351013FPNorthridge-0119946.692.80
    36767FPLoma Prieta19896.933.00
    371063FPNorthridge-0119946.693.00
    38178FPImperial Valley-0619796.533.10
    39983FNNorthridge-0119946.693.50
    401529FPChi-Chi,Taiwan,China19997.623.80
    41161FNImperial Valley-0619796.534.00
    42180FNImperial Valley-0619796.534.00
    43182FNImperial Valley-0619796.534.20
    44182FPImperial Valley-0619796.534.50
    45802FNLoma Prieta19896.934.50
    46170FNImperial Valley-0619796.534.50
    471176FPKocaeli,Turkey19997.514.60
    48179FNImperial Valley-0619796.534.60
    49185FNImperial Valley-0619796.534.80
    50825FPCape Mendocino19927.014.90
    注:FN为垂直断层分量,FP为平行断层分量,地震波以脉冲周期升序排列。
    下载: 导出CSV

    表  4  隔震层位移对比

    Table  4.   Comparison of displacement of isolation layer

    地震类型PGA/g隔震层位移/mm
    最大值平均值
    脉冲型0.0717.356.11
    0.2049.8817.48
    0.4098.3935.12
    非脉冲型0.076.962.72
    0.2019.887.77
    0.4039.8915.51
    下载: 导出CSV
  • 国巍,李宏男. 2008. 多维地震作用下偏心结构楼板谱分析[J]. 工程力学,25(7):125–132.
    Guo W,Li H N. 2008. Floor response spectrum of eccentric structure to two-dimensional earthquake[J]. Engineering Mechanics,25(7):125–132 (in Chinese).
    韩淼,王亮. 2005. 考虑耦联影响的二次结构体系减震分析[J]. 世界地震工程,21(1):42–46. doi: 10.3969/j.issn.1007-6069.2005.01.008
    Han M,Wang L. 2005. Seismic analysis of secondary systems considering coupling effect[J]. World Earthquake Engineering,21(1):42–46 (in Chinese).
    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 103–104.
    Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 103–104 (in Chinese).
    李杰,陈淮,孙增寿. 2003. 结构-设备动力相互作用试验研究[J]. 工程力学,20(1):157–161. doi: 10.3969/j.issn.1000-4750.2003.01.031
    Li J,Chen H,Sun Z S. 2003. Shaking table tests on spatial structure-equipment model systems[J]. Engineering Mechanics,20(1):157–161 (in Chinese).
    李爽,谢礼立. 2007. 近场问题的研究现状与发展方向[J]. 地震学报,29(1):102–111. doi: 10.3321/j.issn:0253-3782.2007.01.012
    Li S,Xie L L. 2007. Progress and trend on near-field problems in civil engineering[J]. Acta Seismologica Sinica,29(1):102–111 (in Chinese).
    李小军,贺秋梅,张慧颖,雷墉. 2018. 地震动速度脉冲对不同高宽比基础隔震结构抗震性能的影响[J]. 建筑结构学报,39(1):35–42.
    Li X J,He Q M,Zhang H Y,Lei Y. 2018. Effects of velocity pulse of ground motion on seismic capacity of base-isolated structures with different height-to-width ratios[J]. Journal of Building Structures,39(1):35–42 (in Chinese).
    刘启方. 2005. 基于运动学和动力学震源模型的近断层地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 19–41.
    Liu Q F. 2005. Studies on Near-Fault Ground Motions Based on Kinematic and Dynamic Source Models[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 19–41 (in Chinese).
    潘毅,时胜杰,常志旺,胡思远. 2018. 近断层脉冲地震动对基础隔震结构放大效应的量化分析[J]. 土木工程学报,51(11):8–16.
    Pan Y,Shi S J,Chang Z W,Hu S Y. 2018. Quantitative study on amplification effect of base-isolated structures subjected to near-fault pulse-like ground motions[J]. China Civil Engineering Journal,51(11):8–16 (in Chinese).
    谭潜,李英民,向渊明,罗文文,卜长明,王丽萍. 2019. 远场长周期地震动特征[J]. 地震工程与工程振动,39(5):177–188. doi: 10.13197/j.eeev.2019.05.177.tanq.018
    Tan Q,Li Y M,Xiang Y M,Luo W W,Bu C M,Wang L P. 2019. Study on characteristics of far-field long period ground motion[J]. Earthquake Engineering and Engineering Dynamics,39(5):177–188 (in Chinese).
    徐龙军,谢礼立. 2005. 集集地震近断层地震动频谱特性[J]. 地震学报,27(6):656–665. doi: 10.3321/j.issn:0253-3782.2005.06.010
    Xu L J,Xie L L. 2005. Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake[J]. Acta Seismologica Sinica,27(6):656–665 (in Chinese).
    杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124.
    Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).
    Anderson J C,Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. J Struct Eng,113(8):1709–1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709)
    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    Hall J F,Heaton T H,Halling M W,Wald D J. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthq Spectra,11(4):569–605. doi: 10.1193/1.1585828
    Loh C H,Wan S,Liao W I. 2002. Effects of hysteretic model on seismic demands:Consideration of near-fault ground motions[J]. Struct Design Tall Build,11(3):155–169. doi: 10.1002/tal.182
    Makris N,Chang S P. 2000. Effect of viscous,viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthq Eng Struct Dyn,29(1):85–107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N
    Mavroeidis G P,Papageorgiou A S. 2003. A mathematical representation of near-fault ground motions[J]. Bull Seismol Soc Am,93(3):1099–1131. doi: 10.1785/0120020100
    Oropeza M,Favez P,Lestuzzi P. 2010. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method[J]. Bull Earthq Eng,8(2):387–400. doi: 10.1007/s10518-009-9139-0
    Rodriguez-Marek A. 2000. Near-Fault Seismic Site Response[D]. Berkeley: University of California: 103–198.
    Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466. doi: 10.1785/0120130191
    Vassiliou M F,Makris N. 2011. Estimating time scales and length scales in pulselike earthquake acceleration records with wavelet analysis[J]. Bull Seismol Soc Am,101(2):596–618. doi: 10.1785/0120090387
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  31
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回