地震学报  2008, Vol. 30 Issue (1): 12-25
用频率域台阵技术推测2001年昆仑山口西大地震的破裂时间与几何特征
张红霞1 , 许力生1, 陈运泰1, 李春来1, K.Stammler2    
1. 中国北京100081中国地震局地球物理研究所
2. Seismologisches Zentralobservatorium Mozartstr, 57, 91052 Erlangen, Germany
摘要:概述频率域远场台阵技术应用于大地震能量辐射源的追踪原理,介绍利用这一技术追踪能量辐射源的一般步骤,并以2001年昆仑山口西大地震为例,分析资料处理中主要参数设置所需要考虑的关键因素. 通过分析埃塞俄比亚/肯尼亚地震台阵(EK台阵)的宽频带波形资料,获得了2001年昆仑山口西大地震的起始破裂点的位置,能量辐射源的空间分布特征,以及破裂持续时间. 根据EK台阵资料的分析结果,2001年昆仑山口西大地震的起始破裂点位于布喀达坂峰东侧(35.92°N,91.70°E),破裂持续时间不超过160 s,破裂长度约520 km. 其中,初始破裂点以西为180 km,以东为340 km. 断层西段在布喀达坂峰附近向西南方向发生弯曲,与地表破裂吻合. 断层东段似乎在西大滩断裂附近向东北方向发生弯曲,其方向与西大滩断层的走向一致,但二者相距约30 km. 另外,分析结果似乎表明,地震断层的西段近乎直立,而东段逐渐南倾.
关键词频率域台阵技术    2001年昆仑山口西大地震    能量辐射源    
Frequency-domain array technique analysis for the rupture duration time and geometrical characteristics of the 2001 Western Kunlun Mountain Pass earthquake
Zhang Hongxia1 , Xu Lisheng1, Chen Yuntai1, Li Chunlai1, K. Stammler1, 2    
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
2. Seismologisches Zentralobservatorium Mozartstr, 57, 91052 Erlangen, Germany
Abstract: In this paper, we briefly describes the principle of tracking energy radiation sources of large earthquakes using frequency-domain far-field array technique, presents general steps of tracking energy radiation sources, and takes the 2001 Western Kunlun Mountain Pass earthquake as an example to analyze key factors for setting parameters while processing data. The location of the rupture initiation point, the spatial characteristics of the energy radiation sources and the rupture duration time of the 2001 Western Kunlun Mountain Pass earthquake are obtained by analyzing broadband waveform data from a seismic array in Ethiopia and Kenya (EK Array). From the analyzed results, the rupture initiation point of the 2001 Kunlun Mountain earthquake is located in the east of Buka Daban Peak (35.92°N,91.70°E), and the rupture duration time is less than 160 s, and the rupture length is about 520 km, with 180 km in the west of the initiation point and 340 km in the east, respectively. The western segment of the earthquake fault bends towards southwest near Buka Daban Peak, which is in concordance with the surface rupture trace. The eastern segment apparently bends towards northeast near Xidatan, which is in agreement with the strike of Xidatan fault, but 30 km away from Xidatan fault. In addition, the analyzed results imply that the western segment of the earthquake fault appears erect while the eastern segment appears to be gradually dipping southwards.
Key words: frequency-domain array technique    2001 Western Kunlun Mountain Pass earthquake    energy radiation sources    
引言

地震台阵的概念产生于1960年代. 台阵的出现与地震震源的研究紧密相关. 其最初的目的是检测和识别地下核爆炸,尤其是在区分地下核爆炸与天然地震震源以及降低检测阈值方面,目的明确,效果明显(Douglas et al, 1999Duglas, 2002). 随着时间的推移,台阵资料的应用范围逐渐扩大. 地震台阵在地球表面稠密的空间采样,使台阵资料能够应用于地球内部速度结构细节的研究(Karason, Van der Hilst, 2001),区域尺度的高分辨率层析成像(Arlitt et al, 1999; Ritter et al, 2001),小尺度地幔结构研究(Castle, Creager, 1999; Kruger et al, 2001),以及核-幔边界(Thomas et al, 1999; Rost, Revenaugh, 2001)及内核的各向异性研究(Vidale, Earle, 2000). 1980年以来,有人开始用近震或区域地震记录研究地震的破裂方向性(Spudich, Cranswick, 1984; Goldstein, Archuleta, 1991; Huang, 2001) . 2004年12月26日的苏门答腊-安达曼特大地震震源破裂过程的台阵技术分析,使台阵技术的应用范围得到进一步拓广(Kruger, Ohrnberger, 2005).

2001年11月14日,在昆仑山口西发生了一次MS8.1(MW7.8)的大地震. 昆仑山口西大地震是本世纪迄今为止最大的内陆地震,其地表破裂长度达400多km(Lin et al, 2002; Van der Woerd et al, 2002; Xu et al, 2002). 根据测定的震源机制,这次地震的断层几乎是纯左旋走滑断层(Xu et al, 2002). 根据哈佛大学的测定,这次地震的震源矩心位于库赛湖附近(35.80°N,92.91°E). 这一结果与长周期波形反演结果非常一致(Xu,Chen, 2005). 然而,不同研究给出的这次地震的起始破裂点位置和破裂持续时间仍然存在较大差异. 青海省地震局(QEA)测定的位置为35.84°N, 91.1°E;中国地震台网中心(CENC)测定的位置为36.2°N, 90.9°E;美国地质调查局(USGS)测定的位置为 35.95°N, 90.54°E. Engdahl(Tocheport et al, 2006)对这次地震重新定位的结果为35.894°N, 90.573°E(图 8). 关于这次地震的破裂持续时间也有不同的结果. 长周期波形反演结果表明,这次地震的破裂持续时间约为140 s(Xu, Chen, 2005);宽频带波形资料分析表明,这次地震的持续时间约为110 s(Tocheport et al, 2006). 根据野外考察,同震地表破裂西起布喀达坂峰西(90.2°E),东至昆仑山口东(95°E),长达435 km(Lin et al, 2003; Xu et al, 2002). 整个破裂被布喀达坂峰附近的一个长约40 km的张性地堑系分成两段,西段长30 km,东段长380 km(Klinger et al,2005)(图 8). 关于同震位移,测量结果也不尽相同(Lin et al, 2002; Van der Woerd et al, 2002; Klinger et al, 2005, 2006; Fu et al, 2005 ; Lasserre et al, 2005; Li et al, 2005; Xu et al, 2006). Lin等(2002)认为最大的地表位错可达16 m, 但其他人 (Xu et al, 2002; Klinger et al, 2005, 2006; Lasserre et al, 2005; Xu et al, 2006) 认为,在大多数地点,同震位移为3—5 m,最大位移只发生在震中东250 km的地方,约8—10 m(Xu et al, 2002; Klinger et al, 2006; Lasserre et al, 2005). 该位置与哈佛大学测定的震源矩心位置接近(图 8).

关于2001年昆仑山口西大地震,已经有一些研究结果发表 (Lin et al, 2002; Van der Woerd et al, 2002; Xu et al, 2002, 2006; Klinger et al, 2005, 2006; Fu et al, 2005 ; Lasserre et al, 2005; Li et al, 2005Xu, Chen, 2005),但在很多方面仍存在不可忽视的差异. 例如,初始破裂点的位置、 断层的分段、 破裂过程的细节等. 不过,关于断层地表破裂的空间分布和地表破裂尺度方面的结论基本是一致的. 因此,本文首先对频率域远场台阵技术应用于大地震能量辐射源的追踪原理予以阐述; 然后,以2001年昆仑山口西大地震为例,介绍利用远场台阵技术追踪能量辐射源的一般过程,并阐明资料处理过程中有关参数设置的技巧;最后,通过2001年昆仑山口西大地震地表破裂几何特征与利用频率域台阵技术推断的这次地震能量辐射源的空间分布特征的对比分析,确立推断结果的可靠性,进而确定这次地震的初始破裂点的位置以及地震震源过程的总持续时间等.

1 原理

设台阵位于(x, y)平面内,坐标原点位于某个台站位置(称为台阵参考点),台阵中第i个台站的位置用ri表示. 那么,在频率域中,台阵输出的总能量可以表示为(Rost, Thomas, 2002)

式中,s0为对应于参考点的慢度矢量; s为任意慢度矢量; F(ω)为参考台信号谱; N为台站数;

为台阵响应函数(array response function). 由式(2)可以看出,台阵响应函数由台阵的几何特性决定,它既是慢度的函数,也是频率的函数.

对于一次小地震来说,其震源很小,可以视为一个点源. 一次大地震的震源可以当作多个点源在一定空间范围的分布. 对于一个点源,可以通过台阵的能量输出找到一个最佳慢度矢量. 对于多个点源,可以通过台阵的能量输出找到多个最佳慢度矢量. 因此,对大地震而言,式(1)和式(2)分别变为

式中,m代表信号的时段或不同的时间窗. 由此可见,把复杂地震或大地震的地震记录分割成若干时段.然后,通过计算台阵在各时段的能量输出,可以确定各时段的信号对应的最佳慢度矢量.

通过f-k分析,我们得到的是台阵参考点的水平慢度矢量,即水平慢度矢量的模和地震事件的方位角. 为了确定地震事件的位置,我们还需要知道事件与台阵参考点之间的距离,即震中距. 震中距与慢度的关系依赖于地震波传播介质,不同的地球模型给出不同的震中距-慢度关系. 我们注意到,ak135分层地球模型已经给出了很好的慢度与震中距的关系(图 1).

图 1 基于ak135模型计算得到的震中距在 50°—60°范围的走时曲线与慢度曲线. 实 线为走时曲线,虚线为慢度曲线. 实心圆表示 2001年昆仑山口西大地震起始破裂点的直达 P波到EK台阵各个台站的实际观测走时 Fig. 1 Relations between traveling time and distance and between slowness and distance on a basis of the ak135 model in the epicentral range of 50°to 60°. The solid curve is of traveling time, the dashed curve is of slowness, and the solid circles denote observed traveling times of direct P-wave from the rupture initiation point of the 2001 Western Kunlun Mountain Pass earthquake to all the EK Array stations
2 台阵概况 2.1 台阵构成

为了探测东非大裂谷地带的壳幔结构,Nyblade和Langston(2002)于2000年1月—2002年12月在埃塞俄比亚与肯尼亚境内建立了临时的宽频带地震试验台网(Ethiopia/Kenya Broadband Seismic Experiment, 以下简称为EK台阵). 按照原来的设计,EK台阵共有35个台. 在2001年11月昆仑山口西大地震发生时,其中23个台站清楚地记录到这次 地震. 但是,只有如图 2a所示的22个台相对集中,可以作为 台阵使用. 具体的位置及投入运行与停止运行的时间见表 1. 这些台站配有3类宽频带数字地震仪,采样率为20 点/秒,其幅频特性如图 2b所示. 3类仪 器的速度响应平坦区处在0.05 Hz与4 Hz之间.EK台阵的孔径约560 km,台站之间的距离从数十公里至数百公里不等.参考台站距2001年昆仑山口西大地震的仪器震中约54.5°.

图 2 2001年昆仑山口西大地震震中、 EK台阵以及所使用的仪器的幅频特性
(a) 2001年昆仑山口西大地震的震中位置(黑色菱形)与构成EK台阵的各台站位置(黑色三角形). 其中,较大的三角形为参考台; (b) 构成台阵的3类宽频带地震仪的幅频 特性曲线. Ⅰ类仪器和Ⅱ类仪器的幅频特性彼此非常接近
Fig. 2 The epicenter of the 2001 Western Kunlun Mountain Pass earthquake, the EK Array and amplitude-frequency characteristics of the typical seismometers used in this study
(a) The epicentral location (black diamond) of the 2001 Western Kunlun Mountain Pass earthquake and the locations of all the EK Array stations (black triangle). The bigger triangle is specially for the reference station; (b) Amplitude-frequency curve of three types of seismometers used in the EK Array. Amplitude-frequency curves for Types I and II are very similar each other

表1 EK台阵台站情况 Table 1 Locations and operation dates of stations in the EK Array
2.2 台阵的频率响应

如前所述,台阵响应函数既是频率的函数,也是慢度的函数. 对于2001年昆仑山口西大地震而言,我们主要关心台阵参考台站距这次地震的最近破裂点和最远破裂点之间的慢度所对应的频率响应.因此,我们选择了断层的最西端(35.97°N,90.31°E)和最东端 (35.53°N,94.87°E)距参考台站(9.03°N,38.76°E)的距离所对应的慢度7.321 5 s/(°)和7.067 8 s/(°),计算了它们的频率响应. 如图 3所示,这两个慢度对应的频率响应曲线在小于1 Hz的频段完全重合,差异表现在大于1 Hz的高频段. 两个慢度低频段频率响应的一致性表明,同一频段的信号可以用来研究2001年昆仑山口西大地震从东到西的整个破裂范围.

图 3 EK台阵在慢度分别为7.321 5 s/(°)和 7.067 8 s/(°)情况下的频率响应曲线 Fig. 3 Frequency responses of the EK Array at slownesses of 7.3215 s/(°) and 7.0678 s/(°), respectively
2.3 台阵的慢度响应

在计算慢度响应时,我们不但考虑仪器的频率响应,还需要考虑台阵的频率响应. 对于2001年昆仑山口西大地震而言,恰当的频率范围约为0.05—0.5 Hz. 所以,我们选择 计算了频率为0.05,0.1,0.2 Hz和0.5 Hz 四种情况下台阵的慢度响应. 如图 4所示,低频信号慢度响应比较钝,高频信号的慢度响应比较锐. 换句话说,低频的慢度分辨率较低,高频的慢度分辨率较高.

图 4 EK台阵频率分别为0.05 Hz(a)、 0.1 Hz(b)、 0.2 Hz(c)和0.5 Hz (d) 情况下的慢度响应 Fig. 4 Slowness responses of the EK Array at frequencies of 0.05 Hz (a), 0.1 Hz (b), 0.2 Hz (c) and 0.5 Hz (d), respectively
2.4 台阵的定位能力

理想台阵的慢度响应是二维狄拉克-δ函数,但实际的台阵不可能有这样的慢度响应,它总是存在或多或少的缺陷. 这个缺陷必然给观测结果带来误差. 为此,我们设计了一个数值试验,目的是检验EK台阵在目标区域的定位能力. 如图 5所示,在88°E—99°E、33°N—39°N的地域范围均匀设置121个格点. 在经度方向上格点间距为1°,在纬度方向上格点间距为0.6°. 我们用0.1 Hz的正弦半周期信号作为每个格点处辐射的信号,用ak模型的P波走时作为每个格点到达台阵各台站的走时. 然后,以这些信号为台阵输入,计算台阵输出,进而确定由台阵确定的信号辐射源的位置. 不出所料,由台阵输出得到的所谓信号辐射源的位置都或多或少地偏离了原来设计的格点位置,而且,位置不同,偏差的大小和方向也不同. 这说明我们的台阵的确是不完美的. 但是,如果我们了解了台阵在各点的偏差特性,台阵缺陷引起的偏差可以很好地得以校正.

图 5 EK台阵在88°E—99°E、33°N—39°N地域范围内的位置校正矢量分布. 箭尾所在 的点为真正的信号源,箭头所指的点为通过计算台阵输出确定的点 Fig. 5 Location-correction vectors in the area of 88°E to 99°E, 33°N to 39°N for the EK Array. The arrow end is the input signal sources, and the arrow head is the locations determined by the EK Array
3 数据及其处理 3.1 资料的预处理

如上所述,EK台阵原来由35个台组成,但本文所能使用的只有22个台的资料. 我们只选用了这22个台的垂直分向的记录,因为水平向的记录受到较强的干扰. 所有的原始记录都有不同程度的背景噪声,为此,我们使用了11阶小波滤波器. 我们注意到了经过小波滤波后,背景噪声几乎完全消失(图 6).

图 6 EK台阵各台垂直分向前220 s的记录(a)与参考台垂直分向前220 s记录的振幅谱(b) Fig. 6 The first 220 s vertical components of the EK Array stations (a) and the amplitude spectrum of the first 220 s recording of the reference station (b)
3.2 频段的选择

为了选择合适的频段,计算了参考台垂直分向前220 s记录的振幅谱. 如图 6b所示,EK台阵记录到的2001年昆仑山口西大地震的信号主要分布在0.05—0.5 Hz的频率范围. 这个频率范围恰好与EK台阵在我们所关心的慢度范围所对应的频率范围相吻合. 因此,在计算台阵的能量输出时,我们所选择的频率范围取为0.05—0.5 Hz.

3.3 慢度矢量的离散

在通过计算台阵的能量输出求解慢度矢量时,我们在极坐标系中进行. 首先,取慢度矢量的模范围为0—10 s/(°),离散间隔为0.1 s/(°);方位角范围在0°—360°,离散间隔为1°. 通过计算能量输出,得到最佳近似慢度矢量的模为7.3,方位角为53°. 然后,考虑到结果的空间分辨率,取慢度矢量的模范围为6.5—7.5 s/(°),离散间隔为0.01 s/(°);方位角范围在50°—60°,离散间隔为0.1°. 这样的离散间隔在昆仑山地震断层的东端对应于不超过14 km的间隔,在西端对应于不超过18 km的间隔.

3.4 时间窗宽度的确定

用移动窗f-k分析方法确定地震过程中不同时刻能量辐射源位置时,时间窗的设置至关重要. 一方面,时间窗的设置关系着结果的分辨率;另一方面,时间窗的设置依赖于所用信号的波长. 过大的时间窗会降低结果的分辨率,但时间窗的宽度又不能小于所用信号的最长波长,否则截断误差会非常突出. 因此,我们选择所用信号的最长波长20 s作为移动时间窗的宽度.

3.5 移动步长的确定

时间窗的移动步长决定着结果的时间分辨率. 所使用的地震波记录的采样率为20点/秒,因此,允许我们使用的最短时间步长为0.05 s. 但这样一个时间分辨率与我们的分析结果能达到的空间分辨率很不相配. 正如上文所说,这里的空间分辨率在14—18 km之间,因此,我们适当提高时间窗的移动步长至1 s. 这个时间步长在我们关心的距离范围对应于约16 km的空间分辨率,与慢度离散间隔对应的空间分辨率相当.

3.6 不同时间窗信号慢度的确定

根据上面确定的时间窗宽度以及时间窗的移动步长,将每个台站记录的地震信号切分成多段信号. 比如,某个台的记录从初动开始,移动步长为1 s,移动200次,结果是把220 s的有用信号切分成了200个子信号. 类似地,每个台的信号都可以切分成200个子信号. 然后,按照顺序分别计算不同台的同一子信号的最大台阵输出所对应的慢度矢量. 200个子信号产生200个慢度矢量.

3.7 慢度矢量到震中距与方位角的转换

慢度矢量在极坐标系中有两个分量,即矢量的模标量慢度与方位角. 前面已经提到,走时是震中距的函数,震中距是慢度的函数. 反之亦然. 因此,我们可以根据慢度与震中距的关系,实现从慢度到震中距的转换. 200个慢度矢量产生200个震中距和方位角.

3.8 震中距与逆方位角到地理坐标的转换

如果知道台阵参考点的地理坐标,也知道那些能量辐射源相对于这个参考点的距离与方位角,则不难确定这些能量辐射源的地理位置. 从参考点的地理坐标、 目标点的距离与方位角到目标点地理坐标的转换,可以通过球面三角变换来实现. 这样,观测点的地理坐标便得以确定.

3.9 地理位置的校正

一般说来,通过计算台阵的最大输出得到慢度矢量,由慢度矢量确定距离与方位角,由距离与方位角确定目标点的地理坐标的过程中的每个环节都可能引入误差. 这些误差最终导致我们的观测结果不同程度地偏离实际结果. 但是,造成偏差的主要且根本原因是台阵空间分辨的非均匀性和各向异性造成的缺陷,以及地震波传播介质的非均匀性和各向异性导致的走时不准确. 对于2001年昆仑山口西大地震而言,走时引起的偏差可以忽略不计,因为从图 1可以看出,观测走时与ak模型给出的走时非常接近. 因此,在我们的分析过程中,对台阵的缺陷引起的偏差进行了校正. 首先,以DELE台第一个时间窗的信号为源信号,根据理论走时为台阵的每个台产生“地震记录”;然后,用这些记录作为台阵输入,通过计算台阵输出的最大能量确定最佳慢度矢量,进而确定源信号的地理位置. 这个位置与原来位置的矢量差即为该点的校正矢量. 因此,在通过观测资料的分析得到的位置上应添加这个校正矢量,才能得到真实的位置.

3.10 可信度分析

在完成以上步骤后,需要分析结果的可信度. 结果的好坏主要由资料拟合的质量加以评价. 在台阵资料分析中,很重要的一点是看台阵信号聚束质量. 如果聚束质量好,则结果可信度高;如果聚束质量差,则结果的可信度差. 因此,在本项研究中我们主要根据聚束信号与参考台信号的相关系数来评价聚束信号的质量.

4 结果 4.1 地震破裂持续时间

如果台阵的每个台都能清楚地记录到来自同一震源的信号(这里指直达P波),那么台阵的聚束波形和参考台的信号应该具有很好的相关性. 否则,二者的相关性则很差. 因此,我们可以通过台阵的聚束波形和参考台的记录波形的相关性来确定直达P波的辐射持续时间,即地震破裂的持续时间. 图 7a展示了台阵的聚束信号与参考台信号的比较. 台阵聚束信号与参考台信号在各时间窗里的相关系数由图 7b给出. 我们注意到,相关系数随时 间窗的不同而不同.这种变化反映了我们得到的结果对观测资料的解释程度,也反映了结果的可信度. 从图 7b看出,大约在166 s时,相关系数陡降到0.4以下,而且在160 s之后,相关系数都不及0.6. 因此,可以认为160 s之后,直达P波基本消失. 换句话说,地震破裂的持续时间大约为160 s. 其实,从图 7a也可看出,160 s之后参考台波形和台阵聚束波形之间开始出现明显差别,这说明台阵各台记录到的信号不是来自同一信号源. 此外,在分析能量辐射源随时间和空间变化过程时我们也发现,当时间推移到160 s时,辐射源恰好到达昆仑山断层的东端. 关于这次地震辐射源的时空变化,我们拟另文讨论.

图 7 (a) 参考台观测波形与台阵聚束波形之间的比较; (b) 各时间窗内 参考台观测波形与台阵聚束波形之间的相关系数 Fig. 7 The comparison of the observed waveform of reference station with the array beamed waveform (a) and the correlation coefficient in between in each time-window (b)
4.2 地震断层的几何特征

图 8a展示了利用EK台阵22个宽频带台的垂直分向前180 s的波形资料,通过移动时间窗f-k分析得到的各移动窗信号源的位置. 图 8b给出了各点对应的聚束信号与参考台信号之间的相关系数β,作为对图 8a结果的可信度评价. 从图 8a可以看出,通过波形资料分析确定的信号源的位置分布在一个约100 km宽的条带内,而不是分布在一条简单的几 何线上. 这种特征可能是误差所致,也可能是其它断层参与活动的结果(Liu et al, 2005),在此暂且不论. 我们只想通过多项式拟合来勾画这次地震能量辐射源对应的“断层迹”,以便于与这次地震的地表破裂迹比较. 我们发现一次和二次多项式对应的标准偏差较大, 三次、 四次和五次多项式对应的标准偏差明显降低,且几乎维持在同一水平. 在这里我们只给出三次多项式描述的曲线(图 9). 如图 10所示,这个三次曲线的走势与地表破裂的走势非常接近,尤其在断层的西段,二者几乎重合. 在92°E以西的断层段,二者的距离非常接近,最大距离未超过0.1°(约11 km);在92°E以东的断层段,二者的距离逐渐增大,在94°E距离达到最大,约0.24°(约26 km). 这个距离的变化与我们结果的14—18 km的空间分辨率在同一量级. 但是,注意到这个距离的变化具有一定的趋势,所以,我们认为这种从西到东距离上的变化在一定程度上反映了断层倾角的变化. 断层西段近乎直立,而东段倾角逐渐减小,因为,拟合曲线的位置反映的是地壳内10 km深处地震能量辐射源的位置,而不是地表断层迹的位置. 我们计算了拟合迹线的长度, 最西端和最东端两个破裂点之间的距离约为520 km.

图 8 (a) 昆仑山口西地震前180 s时间窗内能量辐射源的位置; (b) 各能量辐射源的可信度指标
红色圈为校正前的位置,蓝色圈为校正后的位置. 圈的大小由各时间窗内参考台 观测波形与台阵聚束波形之间的相关系数确定. 黑色粗线为2001年昆仑山口西地震断 层出露地表的迹线. 红色菱形和蓝色菱形表示通过EK台阵分析得到的初始破裂点 的位置. 图中也标出了美国地质调查局(USGS)(菱形)、 中国地震台网中心(CENC) (正方形)、 青海省地震局(QEA)(圆环)给出的初始破裂点的位置,还标出 了哈佛大学(Harvard)(星号)给出的矩心位置以及Engdahl(Tocheport et al, 2006) (圆圈)给出的初始破裂点重新定位结果
Fig. 8 (a) The locations of energy radiation sources of the Western Kunlun Mountain Pass earthquake in the time-window of the first 180 s; (b) The reliability indexes for energy radiation sources
Red circles denote the uncorrected locations while blue ones denote the corrected locations. The size of the circles is proportional to the correlation coefficient between the reference-station waveform and the array beamed waveform in each time window. Black thick curve is the surface rupture trace of the 2001 Western Kunlun Mountain Pass earthquake. Double-diamonds are the rupture initiation points determined by the EK Array. Also, the rupture initiation points determined by USGS (diamond), CENC (square), QEA (cirque) and Engdahl(circle), and the location of centroid of moment tensor by Harvard University (asterisk) are plotted

图 9 由EK台阵确定的2001年昆仑山口西大地震前180 s时间窗内能量辐射源的位置 (红色实心圆)以及由这些点通过三次多项式拟合得到的迹线(蓝色线) Fig. 9 Locations of the energy radiation sources of the 2001 Western Kunlun Mountain Pass earthquake in the time window of the first 180 s determined using the EK Array (red solid circles), and the trace (blue curve) fitted with 3-order polynomial using these locations
4.3 地震的起始破裂点

从上节的对比分析可以看出,用EK台阵宽频带资料, 通过移动时间窗f-k分析确定的地震波辐射源的位置具有相当高的可信度. 据此,我们对初始破裂点的位置作进一步的 讨论. 图 8图 9中的双菱形代表用EK台阵宽频带资料确定的起始破裂点的位置,位于 35.92°N,91.70°E. 可以看出,这个点位于我们用三次多项式拟合的断层迹线上(图 9),也几乎位于地表破裂迹线上(图 8). 但这个位置不同于青海省地震局(QEA)测定的位置,也 不同于中国地震台网中心(CENC)测定的位置,也不同于美国地质调查局(USGS)测定的位置,以及Engdahl(Tocheport et al, 2006)的重新定位结果. 值得指出的是,在我们确定的初始破裂点以西还有许多地震波辐射源,而美国地质调查局(USGS)测定的位置以及Engdahl(Tocheport et al, 2006) 确定的位置几乎位于断层的西端,意味着几乎没有西向破裂.

图 10 通过三次多项式拟合得到的迹线(蓝色)与野外考察得到的地表破裂 迹线(黑色)的比较. 红色圆圈代表野外考察点的位置 Fig. 10 Comparison of the trace (blue) fitted with 3-order polynomial with the rupture trace on the ground surface (black) and the field observation points (red circles)
5 讨论和结论

本文概述了频率域远场台阵技术应用于大地震能量辐射源的追踪原理,并以2001年昆仑山口西大地震为例,介绍了应用这一技术的一般过程,阐明了资料处理过程中主要参数设置所需要考虑的关键因素.

通过分析处理EK台阵的宽频带波形资料,获得了2001年昆仑山口西大地震的起始破裂点的位置、 能量辐射源的空间分布以及地震破裂的总持续时间. 2001年昆仑山口西大地震的起始破裂点位于35.92°N,91.70°E. 分析表明,这个结果具有较高的可信度. 首先,在纬度方向上,它位于观测的地表断层迹,而且也非常接近于我们得到的能量辐射源的拟合迹线;其次,在经度方向上,在它的西侧有一定尺度的断层. 事实上,有许多能量辐射源分布在它的西侧. 这一点是无法用美国地质调查局(USGS)测定的位置以及Engdahl(Tocheport et al, 2006) 重新定位的结果予以解释. 2001年昆仑山口西大地震的破裂持续时间约为160 s. 当然,这个值可能略大于实际地震的破裂持续时间,因为这次地震是以从西向东为主的单侧破裂,而EK台阵在地震的西南方向. 即便认为该地震是单侧破裂,地震的总破裂持续时间也不该是110 s(Tocheport et al,2006). 2001年昆仑山口西大地震的断层长度约为519 km. 其中,初始破裂点以西(西段)和以东(东段)分别为181 km和338 km. 断层西段在布喀达坂峰附近向西南方向发生弯曲,与地表破裂十分吻合. 断层东段似乎在西大滩断裂附近向东北方向发生弯曲,其方向与西大滩断裂的走向一致,但二者相距约30 km. 另外,分析结果还似乎表明,地震断层西段近乎直立,但东段有所南倾.

参考文献
[1] Arlitt R, Kissling E, Ansorge J, Tor W G. 1999. Three-dimensional crustal structure beneath the TOR array and effects on teleseismic wavefronts[J]. Tectonophysics, 314: 309-319.(1)
[2] Castle J C, Creager K C. 1999. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin[J]. J Geophys Res, 104: 7 279-7 292.(1)
[3] Douglas A, Bowers D, Marshall P D, Young J B, Porter D, Wallis N J. 1999. Putting nuclear-test monitoring to the test[J]. Nature, 398: 474-475.(1)
[4] Douglas A. 2002. Seismometer arrays: Their use in earthquake and test ban seismology[M]//Jennings P, Kanamori H, Lee W eds. Handbook of Earthquake and Engineering Seismology. Calif: Academic, San Diego, 357-367.(1)
[5] Fu B, Awata Y, Du J, Ninomiya Y, He W. 2005. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China[J]. Tectonophysics, 407: 43-63.(1)
[6] Goldstein P, Archuleta R J. 1991. Deterministic frequency-wavenumber methods and direct measurement of rupture during earthquake using a dense array: data analysis[J]. J Geophys Res, 96: 6 187-6 198.(1)
[7] Huang B S. 2001. Evidence for azimuthal and temporal variations of the rupture propagation of the 1999 Chi-Chi, Taiwan earthquake from dense seismic array observations[J]. Geophys Res Lett, 28: 3 377-3 380.(1)
[8] Kárason H, Van der Hilst R D. 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases(PKP, Pdiff)[J]. J Geophys Res, 106: 6 569-6 587.(1)
[9] Klinger Y, Michel R, King G C P. 2006. Evidence for an earthquake barrier model from MW-7.8 Kokoxili(Tibet) earthquake slip-distribution[J]. Earth Planet Sci Lett, 242(3-4): 354-364.(4)
[10] Klinger Y, Xu X, Tapponnier P, Van der Woerd J, Lasserre C, King G. 2005. High-resolution satellite-imagery mapping of the surface rupture and slip distribution of the MW7.8, November14, 2001 Kokoxili earthquake Kunlun fault, Northern Tibet, China[J]. Bull Seism Soc Amer, 95(5): 1 970-1 987.(4)
[11] Kruger F, Bauman M, Scherbaum F, Weber M. 2001. Mid-mantle scatterers near the Mariana slab detected with a double array method[J]. Geohys Res Lett, 28: 667-670.(1)
[12] Kruger F, Ohrnberger M. 2005. Tracking the rupture of the MW=9.3 Sumatra earthquake over 1 150 km at teleseismic distance[J]. Nature, 435: 937-939.(1)
[13] Lasserre C, Peltzer G, Crampé F, Klinger Y, Van der Woerd J. 2005. Coseismic deformation of the 2001 MW=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry[J]. J Geophys Res, 110(B12408): doi: 10.1029/2004JB003500.(4)
[14] Li H, Van der Woerd J, Tapponnier P, Klinger Y, Qi X, Yang J, Zhu Y. 2005. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, MW7.9 Kokoxili earthquake[J]. Earth Planet Sci Lett, 237: 285-299.(2)
[15] Lin A, Fu B, Guo J, Zeng Q, Dang G, He W, Zhao Y. 2002. Co-seismic strike-slip and rupture length produced by the 2001 MS8.1 central Kunlun earthquake[J]. Science, 296: 2 015-2 017.(4)
[16] Lin A, Kikuchi M, Fu B. 2003. Rupture segmentation and process of the 2001 MW7.8 central Kunlun, China, earthquake[J]. Bull Seism Soc Amer, 93: 2 477-2 492.(1)
[17] Liu J G, Haselwimmer C, Cosgrove J W. 2005. Ruptures found up to 60km south of the major fault zone after 14 Nov 2001 Kunlun earthquake using Landsat-7 ETM+ imagery[C]//IGARSS’05. Proceedings. New York, Ieee: 7: 5 261-5 264.(1)
[18] Nyblade A A, Langston C A. 2002. Broadband seismic experiments probe upper mantle structure beneath Ethiopia and Kenya[C]//American Geophysical Union, Spring Meeting, Abstract. S32A-07.(1)
[19] Ritter J R R, Jordan M, Christensen U R, Achauer U. 2001. A mantle plume below the Eifel vocalnic fields, Germany[J]. Earth Planet Sci Lett, 186: 7-14.(1)
[20] Rost S, Revenaugh J. 2001. Seismic detection of rigid zones at the top of the core[J]. Science, 294: 1 911-1 914.(1)
[21] Rost S, Thomas C. 2002. Array Seismology: Methods and applications[J]. Rev Geophys, 40(3): 1-20.(1)
[22] Spudich P, Cranswick E. 1984. Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array[J]. Bull Seism Soc Amer, 74: 2 083-2 114.(1)
[23] Thomas C, Weber M, Wicks C W, Scherbaum F. 1999. Small scatterers in the lower mantle observed at Berman broadband arrays[J]. J Geophys Res, 104: 15 073-15 088.(1)
[24] Tocheport A, Rivera L, Van der Woerd J. 2006. A study of the 14 November 2001 Kokoxili earthquake: History and geometry of the rupture from teleseismic data and field observations[J]. Bull Seism Soc Amer, 96: 1 729-1 741.(6)
[25] Vidale J E, Earle P S. 2000. Fine-scale heterogeneity in the Earth’s inner core[J]. Nature, 404: 273-275.(1)
[26] Van der Woerd J, Mériaux A S, Klinger Y, Ryerson F J, Gaudemer Y, Tapponnier P. 2002. The 14 November 2001, MW=7.8 Kokoxili earthquake in Northern Tibet(Qinghai Province, China)[J]. Seism Res Lett, 73: 125-135.(3)
[27] Xu L S, Chen Y T. 2005. Temporal and spatial rupture process of the great Kunlun Mountain Pass earthquake of November 14, 2001 from the GDSN long period waveform data[J]. Science in China Series D: Earth Science, 48(1): 112-122.(3)
[28] Xu L S, Chen Y T. 2006. Observed evidence for crack fusion from the November 14, 2001 Kunlun Mountain Pass earthquake[G]. In: Chen Y T ed. Advances in Geosciences. Vol.1: Solid Earth (SE). Singapore: World Scientific: 27-40.(1)
[29] Xu X, Chen W, Ma W, Yu G, Chen G. 2002. Surface rupture of the Kunlunshan earthquake(MS8.1), northern Tibetan plateau, China[J]. Seism Res Lett, 73: 884-892.(5)
[30] Xu X, Ma W, Yu G, Klinger Y, Tapponnier P, Van der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8), Northern Tibetan plateau, China[J]. J Geophys Ges, 111(B05316): doi: 10.1029/2004JB003488.(3)