Joint inversion of teleseismic and co-seismic InSAR data for the rupture process of the 2016 Kumamoto earthquake in Japan
-
摘要: 为了深入认识2016年4月15日日本熊本地震破裂的复杂性,利用远场体波资料和同震InSAR资料联合反演了此次地震的震源破裂时空过程. 联合反演结果表明:熊本地震的震源破裂持续时间约为25 s,整个破裂过程释放的总标量矩为6.03×1019 N·m,对应于矩震级MW7.1;同震滑动主要集中分布于浅部,破裂以右旋走滑为主,但在沿倾向0—5 km范围内,破裂呈较强的正断特征;此次地震破裂的最大同震滑动量约为4.9 m,且最大同震位错区位于背离断层走向上、距离起始破裂点约5—10 km的区域;破裂前期(0—7 s),在倾向上向浅表发生破裂,在走向上向东北和西南两侧扩展;大约7 s后,破裂背离断层走向主要向东北方向扩展. 根据有限断层联合反演结果推测,此次熊本地震破裂可能出露至地表.Abstract: On April 15, 2016, a disastrous earthquake struck Kumamoto county in Japan. Aiming to further understand the complexity of the earthquake rupture in detail, we conduct a joint inversion of teleseismic waveforms and co-seismic InSAR data for the spatio-temporal rupture process of this earthquake. The results show that, the whole process lasted for about 25 s and released scalar moment up to 6.03×1019 N·m, corresponding to moment magnitude MW7.1. The major co-seismic slip distribution was centered in shallow region, and it was dominated by dextral strike. But the rupture had strong normal characteristics in the range of 0−5 km along the dip direction. The maximum co-seismic slip is about 4.9 m, and the major rupture patch was about 5−10 km away from the initial rupture point opposite to the strike direction. In the early stage (0−7 s), it ruptured toward to the shallow region along the dip direction, and ruptured bilaterally along strike direction; about 7 s later, it ruptured toward to the northeast opposite to the strike direction. The joint inversion results suggest that the Kumamoto earthquake may rupture to the earth surface.
-
-
图 2 用于熊本地震破裂过程联合反演的远场体波台站分布(a)以及同震InSAR资料覆盖区域(b)
红色星形表示主震震中位置。图(a)中蓝色三角形表示台站;图(b)中红色方框表示InSAR覆盖区域,黑色框表示图1中的展示区域,黑色圆圈表示主震发生后一个月内MW≥4.0余震的震中分布(USGS,2016)
Figure 2. Distribution of used teleseismic stations (a) and co-seismic InSAR coverage (b) for joint inversion of rupture process of Kumamoto earthquake
The red star represents the mainshock epicenter. The blue triangles in Fig.(a) represent the stations. The red rectangular in Fig. (b) is the co-seismic coverage,the black rectangular delineates the region shown in Fig. 1,and black circles are the MW≥4.0 aftershocks within one month after the main shock (USGS,2016)
图 4 基于远场体波资料和同震InSAR资料所得的熊本地震破裂过程联合反演结果
(a) 地震矩率函数;(b) 同震滑动分布,红色圆点表示起始破裂点
Figure 4. Joint inversion result of rupture process of the 2016 Kumamoto earthquake from teleseismic P waveforms and co-seismic InSAR data
(a) Seismic moment rate function; (b) Distribution of co-seismic slip,where the red dot indicates the initial rupture point
图 6 基于联合反演结果的观测波形(黑色)与合成波形(红色)比较
每幅子图波形的左侧从上至下依次为台站名、震中距(单位:°)和方位角(单位:°),右侧为合成波形与观测波形的相关系数
Figure 6. Comparison of the observed waveforms (black) with synthetic ones (red) based on joint inversion results
On the left side of the waveforms in each subplot are station code,epicentral distance (unit in °) and azimuth (unit in °),and on the right side is correlation coefficient between synthetic waveforms and observed ones
图 8 熊本地震破裂过程远场体波单独反演结果及同震InSAR资料单独反演结果
(a) 远场体波反演得到的破裂过程地震矩率函数;(b) 远场体波反演得到的同震滑动分布;(c) 同震InSAR资料反演得到的同震滑动分布。图(b)中红色虚线方框尺度与图(c)相同
Figure 8. Inversion results of teleseismic waveforms and co-seismic InSAR data for the rupture process of the 2016 Kumamoto earthquake
(a) Seismic moment rate function from inversion result of teleseismic waveforms;(b) Distribution of co-seismic slip from inversion result of teleseismic waveforms;(c) Distribution of co-seismic slip from inversion result of co-seismic InSAR data. The geometric dimensions of the red dotted rectangular in Fig. (b) are the same as in Fig. (c)
图 9 基于远场体波单独反演结果的观测波形(黑色)与合成波形(红色)比较
每幅子图波形的左侧从上至下依次为台站名、震中距(单位:°)和方位角(单位:°),右侧为合成波形与观测波形的相关系数
Figure 9. Comparison of the observed waveforms (black) and synthetic ones (red) based on the teleseismic body waveform inversion results
On the left side of the waveforms in each subplot are station code,epicentral distance (unit in °) and azimuth (unit in °),and on the right side is correlation coefficient between synthetic waveforms and observed ones
-
张贝, 程惠红, 石耀霖. 2015. 2015年4月25日尼泊尔MS8.1大地震的同震效应[J]. 地球物理学报, 58(5): 1794-1803. Zhang B, Cheng H H, Shi Y L. 2015. Calculation of the co-seismic effect of MS8.1 earthquake, Apirl 25, 2015, Nepal[J]. Chinese Journal of Geophysics, 58(5): 1794-1803 (in Chinese).
张旭. 2016. 基于视震源时间函数的震源过程复杂性分析新方法研究[D]. 北京: 中国地震局地球物理研究所: 1–218. Zhang X. 2016. Study on New Methods for Analysis of the Complexity of Source Rupture Process Based on Apparent Source Time Functions[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–218 (in Chinese).
张旭, 严川, 许力生, 李春来. 2017. 2016年阿克陶MS6.7地震震源复杂性与烈度[J]. 地球物理学报, 60(4): 1411-1422. Zhang X, Yan C, Xu L S, Li C L. 2017. Source complexity of the 2016 Aketao MS6.7 earthquake and its intensity[J]. Chinese Journal of Geophysics, 60(4): 1411-1422 (in Chinese).
张勇. 2008. 震源破裂过程反演方法研究[D]. 北京: 北京大学地球与空间科学学院: 1–17. Zhang Y. 2008. Study on the Inversion Methods of Source Rupture Process[D]. Beijing: School of Earth and Space Sciences, Peking University: 1–17 (in Chinese).
Antolik M, Dreger D S. 2003. Rupture process of the 26 January 2001 MW7.6 Bhuj, India, earthquake from teleseismic broadband data[J]. Bull Seismol Soc Am, 93(3): 1235-1248.
Chen Y T, Xu L S. 2000. A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in the Tibetan Plateau[J]. Geophys J Int, 143(2): 407-416.
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2000. The shuttle radar topography mission[J]. Rev Geophys, 45(2): RG2004.
Feng W P, Tian Y F, Zhang Y, Samsonov S, Almeida R, Liu P. 2017. A slip gap of the 2016 Mw6.6 Muji, Xinjiang, China, earthquake inferred from sentinel-1 TOPS interferometry[J]. Seismol Res Lett, 88(4): 1054-1064. doi: 10.1785/0220170019.
Fukahata Y, Hashimoto M. 2016. Simultaneous estimation of the dip angles and slip distribution on the faults of the 2016 Kumamoto earthquake through a weak nonlinear inversion of InSAR data[J]. Earth Planets Space, 68: 204.
GCMT. 2016. Global CMT search results[EB/OL]. [2017-01-07]. http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT4/form?itype=ymd&yr=2016&mo=4&day=15&oyr=2016&omo=4&oday=16&jyr=1976&jday=1&ojyr=1976&ojday=1&otype=nd&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.
Goldstein R M, Werner C L. 1998. Radar interferogram filtering for geophysical applications[J]. Geophys Res Lett, 25(21): 4035-4038.
Goldstein R M, Zebker H A, Werner C L. 1988. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Sci, 23(4): 713-720.
Hao J L, Ji C, Yao Z X. 2017. Slip history of the 2016 Mw7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment[J]. Geophys Res Lett, 44(2): 743-750.
Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bull Seismol Soc Am, 73(6A): 1553-1583.
Himematsu Y, Furuya M. 2016. Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning (EPSP-D-16-00163)[J]. Earth Planets Space, 68(1): 169.
Hollingsworth J, Ye L L, Avouac J P. 2017. Dynamically triggered slip on a splay fault in the MW7.8, 2016 Kaikoura(New Zealand) earthquake[J]. Geophys Res Lett, 44(8): 3517-3525.
Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int, 122(1): 108-124.
Kim A, Dreger D S. 2008. Rupture process of the 2004 Parkfield earthquake from near‐fault seismic waveform and geodetic records[J]. J Geophys Res, 113(B7): B07308.
Scheiber R, Moreira A. 2000. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Trans Geosci Remote Sens, 38(5): 2179-2191.
Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y, Mori H, Imanishi K, Takeda N, Ochi T, Otsubo M, Asahina D, Miyakawa A. 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, Central Kyushu, Japan[J]. Earth Planets Space, 68: 191.
Toda S, Kaneda H, Okada S, Ishimura D, Mildon Z K. 2016. Slip-partitioned surface ruptures for the Mw7.0 16 April 2016 Kumamoto, Japan, earthquake[J]. Earth Planets Space, 68: 188.
Uchide T, Horikawa H, Nakai M, Matsushita R, Shigematsu N, Ando R, Imanishi K. 2016. The 2016 Kumamoto–Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas[J]. Earth Planets Space, 68: 180.
USGS. 2016. M7.0−1 km, E of Kumamoto-shi, Japan[EB/OL]. [2017-01-07]. https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#executive.
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am, 89(3): 733-741.
Wang R J, Martín F L, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust: FORTRAN programs EDGRN/EDCMP[J]. Comput Geosci, 29(2): 195-207.
Ward S N, Barrientos S E. 1986. An inversion for slip distribution and fault shape from geodetic observations of the 1983, Borah Peak, Idaho, Earthquake[J]. J Geophys Res, 91(B5): 4909-4919.
Xu L S, Chen Y T, Teng T L, Patau G. 2002. Temporal-spatial rupture process of the 1999 Chi-Chi earthquake from IRIS and GEOSCOPE long-period waveform data using aftershocks as empirical Green’s functions[J]. Bull Seismol Soc Am, 92(8): 3210-3228.
Yagi Y, Mikumo T, Pacheco J, Reyes G. 2004. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of Teleseismic body-wave and near-source data[J]. Bull Seismol Soc Am, 94(5): 1795-1807.
Yagi Y, Okuwaki R, Enescu B, Kasahara A, Miyakawa A, Otsubo M. 2016. Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano[J]. Earth Planets Space, 68: 118.
Yoshida S. 2016. Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake[J]. Earth Planets Space, 68: 176.
-
期刊类型引用(3)
1. 薛梅,李琳,杨挺,刘晨光,华清峰,夏少红,黄海波,黎伯孟,霍达,潘谟晗. 南海上地幔各向异性结构及动力学含义. 地震学报. 2023(03): 494-520 . 本站查看
2. 赵建忠,李志伟,林建民,郝天珧,包丰,谢军,王嘹亮,涂广红. 南海地区地震背景噪声成像与壳幔深部结构. 地球物理学报. 2019(06): 2070-2087 . 百度学术
3. 蒋婵君,王有学,熊彬,贠鹏,徐金荣,乃振龙. 利用小波变换提取面波群速度. 地震学报. 2017(03): 356-366+451 . 本站查看
其他类型引用(5)