Electromagnetic anomaly identification algorithm based on signal fingerprinting
-
摘要: 本文基于信号指纹技术,通过研究短时(<10 min)地磁异常数据识别算法,完成了对地磁干扰信号类型的识别。本文所用信号指纹技术结合了短时傅里叶变换、小波变换、信号二值化、文本相似性哈希等多种数据和文本处理方法,将一定时间内的波形数据转换为一个32位的整型数字,极大地压缩了信号的特征信息,因此在很大程度上减少了后续查找与分类过程中所需处理的数据。利用该算法对河北红山地磁台2016年5月1—3日两套GM4磁通门磁力仪的原始秒数据的计算结果表明,本文算法可以快速准确地识别干扰信号类型,为实现地磁相对观测数据中异常信号的自动提取提供技术支撑。Abstract: This paper makes research on recognition algorithm of short-time (<10 min) geomagnetic anomaly data, based on signal fingerprint, to recognize the categories of geomagnetic disturbance signals. The signal fingerprinting used in this study can convert the waveform data for a given period of time into a 32-bit integer, basing on the combination of multiple data and text-processing methods, such as Fourier transform, wavelet transform, signal binarization and MinHash, which greatly compresses the feature information of signals, thus greatly reduces the amount of data to be located and classified in the following research. The experiment uses raw second-scale data of two sets of GM4 fluxgate magnetometers recorded at Hongshan geomagnetic station (LYH) in Longyao city of Hebei Province from 1 to 3 May 2016, and the results indicate that the algorithm in this paper can quickly and accurately recognize categories of interference signals, and provides technical support for automatic abnormal signals extraction of geomagnetic relative record data.
-
Keywords:
- short-period anomalies /
- signal fingerprinting /
- MinHash
-
-
表 1 指纹提取过程所用的参数
Table 1 Parameters used in fingerprinting extraction
原始数据采样率 1 Hz 短时变换时间窗 60点 短时变换时间窗延迟 10点 短时傅里叶变换重采样点数 32 二维小波变换时间窗 60点 二维小波变换时间窗延迟 6点 二维小波变换重采样点数 32 -
肖武军, 余素荣, 丁鉴海. 2006. 强震前的地磁异常现象[J]. 地震, 26(4): 52-58. Xiao W J, Yu S R, Ding J H. 2006. The anomalous phenomenon of geomagnetism before strong earthquake occurrence[J]. Earthquake, 26(4): 52-58 (in Chinese).
张继红, 陈忠民, 李波, 周萍. 1999. 马陵山台地磁异常与地震关系的研究[J]. 地震, 19(3): 303-308. Zhang J H, Chen Z M, Li B, Zhou P. 1999. Research on relation between geomagnetic anomaly at Malingshan seismic station and earthquakes[J]. Earthquake, 19(3): 303-308 (in Chinese).
Bobrov D, Kitov I, Zerbo L. 2014. Perspectives of Cross-correlation in seismic monitoring at the international data centre[J]. Pure Appl Geophys, 171(3/5): 439-468.
Bracewell R. 1965. Pentagram notation for cross correlation[C]//Proceedings of the Fourier Transform and its Applications. New York: McGraw-Hill: 46–243.
Duhamel P, Vetterli M. 1990. Fast Fourier transforms: a tutorial review and a state of the art[J]. Signal Processing, 19(4): 259-299.
Geller R J, Mueller C S. 1980. Four similar earthquakes in central California[J]. Geophys Res Lett, 7(10): 821-824.
Gibbons S J, Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation[J]. Geophys J Int, 165(1): 149-166.
Haitsma J, Kalker T. 2002. A highly robust audio fingerprinting system[C]//Proceedings of ISMIR 2002, 3rd International Conference on Music Information Retrieval. Paris, France: DBLP: 107–115.
Haitsma J, Kalker T. 2003. A highly robust audio fingerprinting system with an efficient search strategy[J]. J New Music Res, 32(2): 211-221.
Henzinger M. 2006. Finding near-duplicate web pages: A large-scale evaluation of algorithms[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, Washington, USA: ACM: 284–291.
Manber U. 1994. Finding similar files in a large file system[C]//Proceedings of the Usenix Winter 1994 Technical Conference. San Francisco, California: ACM: 2.
Nakamura K. 2007. Earthquake early warning[J]. BUTSURI-TANSA(Geophys Explor), 60: 367–374.
Pamulaparty L, Rao C V G, Rao M S. 2014. A Near-duplicate detection algorithm to facilitate document clustering[J]. Int J Data Mining Knowl Manage Process, 4(6): 39-49.
Potthast M, Stein B. 2008. New issues in near-duplicate detection[G]//Data Analysis, Machine Learning and Applications. Heidelberg: Springer: 601–609.
Welch P D. 1967. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified Periodograms[J]. IEEE Trans Audio Electroacoust, 15(2): 70-73.
Withers M, Aster R, Young C, Beiriger J, Harris M, Moore S, Trujillo J. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bull Seismol Soc Am, 88(1): 95-106.
Yoon C E, O'Reilly O, Bergen K J, Beroza G C. 2015. Earthquake detection through computationally efficient similarity search[J]. Sci Adv, 1(11): e1501057.