自维持断层蠕滑过程和余震发生率的衰减特征—以汶川MW7.9地震序列为例

解孟雨, 史保平, 林禄春

解孟雨, 史保平, 林禄春. 2018: 自维持断层蠕滑过程和余震发生率的衰减特征—以汶川MW7.9地震序列为例. 地震学报, 40(3): 316-331. DOI: 10.11939/jass.20170124
引用本文: 解孟雨, 史保平, 林禄春. 2018: 自维持断层蠕滑过程和余震发生率的衰减特征—以汶川MW7.9地震序列为例. 地震学报, 40(3): 316-331. DOI: 10.11939/jass.20170124
Xie Mengyu, Shi Baoping, Lin Luchun. 2018: Aftershock rate decay induced by postseismic creep: A case study from the MW7.9 Wenchuan earthquake sequence. Acta Seismologica Sinica, 40(3): 316-331. DOI: 10.11939/jass.20170124
Citation: Xie Mengyu, Shi Baoping, Lin Luchun. 2018: Aftershock rate decay induced by postseismic creep: A case study from the MW7.9 Wenchuan earthquake sequence. Acta Seismologica Sinica, 40(3): 316-331. DOI: 10.11939/jass.20170124

自维持断层蠕滑过程和余震发生率的衰减特征—以汶川MW7.9地震序列为例

基金项目: 科技部国家国际科技合作专项项目(2015DFA21260)资助
详细信息
    通讯作者:

    解孟雨: email: jiemengyu13@mails.ucas.ac.cn

  • 中图分类号: 315.3+3

Aftershock rate decay induced by postseismic creep: A case study from the MW7.9 Wenchuan earthquake sequence

  • 摘要: 基于Dieterich地震活动性理论,本文推导出计算余震发生率和余震累积次数的一般表达式,其中主震后发震断层内部的剪切应力随时间的演化过程遵从Jeffreys-Lomnitz蠕变模型,且与修正Omori定律直接相关。修正Omori定律中的p值与震后断层的短时应力加卸载过程正相关。采用Rubin和Ampuero 给出的震后断层自维持蠕滑模型本文得出计算余震发生率的近似表达式,并对2008年汶川地震序列进行拟合。结果表明,p值的大小直接对应了速率-状态摩擦定律中摩擦参量b/a,而修正Omori定律中的c值则与速率-状态摩擦定律中的临界滑移Dc相关。对于汶川余震序列而言,拟合结果显示b/a约为1.13,Dc约为2—3 cm。Rubin-Ampuero震后自维持蠕滑描述了震后孕震层内部短暂的速率变化特征,是孕震断层演化过程不可缺少的环节。
    Abstract: Based on the Dieterich seismicity theory, this study derived a general formula used to calculate decay rate and cumulative frequency of aftershocks following a mainshock, of which the shear stress variation in the fault plane follows the Jeffreys-Lomnitz creep law and is directly related to the modified Omori law. The p value in the modified Omori law is positively correlated with post earthquake loading and unloading process of the transient stress. Combined with the postseismic slip model proposed by Rubin and Ampuero, this study obtained approximate formulas to describe the variation of seismicity and to fit aftershock sequence following the 2008 MW7.9 Wenchuan earthquake. The results show that the p value is directly associated with the ratio of b/a, where a and b are the frictional parameters used in rate- and state-dependent friction, and the c value used in the modified Omori law is associated with Dc, a critical creep distance described by rate- and state-dependent friction. For the MW7.9 Wenchuan earthquake sequence, the fitting results indicate the ratio of b/a and Dc are about 1.13 and 2 to 3 cm, respectively. It needs to be emphasized that postseismic creep proposed by Rubin and Ampuero is an inherent stage during earthquake cycle, which describes characteristics of the transient velocity change in seismogenic zone after the mainshock.
  • 图  1  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    Figure  1.  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  2   汶川地震ML≥4.0余震的空间分布

    Figure  2.   The spatial distribution of the ML≥4.0 aftershocks of Wenchuan earthquake

    图  3   余震累积次数和不同模型最佳拟合曲线的对比

    (a) MOL模型与Dieterich模型;(b) 断层蠕滑模型与Dieterich模型

    Figure  3.   Comparison between the temporal distribution of the cumulative number of triggered events corresponding to real data and the best fits obtained by the different models

    (a) MOL model and Dieterich model;(b) Postseismic slip model and Dieterich model

    图  4   由拟合参数给出的余震发生率的衰减曲线

    Figure  4.   Decay curves of the aftershock rate versus time for different models with the best fitted parameters

    表  1   MOL模型参数拟合值

    Table  1   Fitted parameters in the MOL model

    K p c/d RMS $ {r_{\rm d}^2}$
    76.290 796 433 386 3 1.129 714 921 398 86 0.174 700 213 127 629 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 201 251 5 1.129 714 919 607 34 0.174 700 212 134 727 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 599 558 6 1.129 714 921 574 52 0.174 700 214 565 022 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 420 031 1 1.129 714 920 241 93 0.174 700 213 526 721 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 407 508 2 1.129 714 920 303 60 0.174 700 213 369 922 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 795 889 337 1 1.129 714 918 858 40 0.174 700 210 045 648 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 203 779 0 1.129 714 919 793 27 0.174 700 211 916 160 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 358 633 6 1.129 714 920 749 10 0.174 700 212 952 576 4.723 176 877 126 94 0.999 064 715 754 963
    76.290 796 339 850 3 1.129 714 920 639 84 0.174 700 212 665 134 4.723 176 877 126 93 0.999 064 715 754 963
    76.290 796 251 218 9 1.129 714 919 679 88 0.174 700 212 577 751 4.723 176 877 126 94 0.999 064 715 754 963
    注:表中K∈[0,500];p∈[0,5];c∈[−10, 10] (Utsu et al,1995 Utsu,2002Hainzl et al,2016)
    下载: 导出CSV

    表  2   Dieterich模型参数拟合值

    Table  2   Fitted parameters in the Dieterich model

    ta/d exp[Δτco/()] Δτco/( RMS $ r_{\rm d}^2$
    5 882.015 239 530 44 123 970.933 974 009 5.093 319 873 110 68 16.132 130 498 174 8 0.989 089 148 314 182
    5 882.014 868 234 99 123 970.963 284 002 5.093 319 975 789 32 16.132 130 498 171 8 0.989 089 148 314 186
    5 882.015 309 131 30 123 970.909 997 818 5.093 319 789 117 38 16.132 130 498 174 2 0.989 089 148 314 182
    5 882.014 592 899 16 123 970.994 215 420 5.093 320 084 148 10 16.132 130 498 172 7 0.989 089 148 314 184
    5 882.014 503 677 40 123 970.987 109 376 5.093 320 059 254 25 16.132 130 498 172 8 0.989 089 148 314 184
    5 882.014 976 173 96 123 970.948 098 090 5.093 319 922 590 10 16.132 130 498 169 5 0.989 089 148 314 189
    5 882.014 915 449 27 123 970.957 968 035 5.093 319 957 166 45 16.132 130 498 172 2 0.989 089 148 314 185
    5 882.015 214 323 03 123 970.935 318 443 5.093 319 877 820 50 16.132 130 498 170 4 0.989 089 148 314 188
    5 882.015 150 196 45 123 970.949 854 423 5.093 319 928 742 88 16.132 130 498 170 6 0.989 089 148 314 187
    5 882.015 052 767 42 123 970.941 083 807 5.093 319 898 017 70 16.132 130 498 167 5 0.989 089 148 314 192
    注:表中ta∈[0,106],exp[Δτco/()]∈[0,106] (Dieterich,2007Kame et al,2013 )。
    下载: 导出CSV

    表  3   断层蠕滑模型参数拟合值

    Table  3   Fitted parameters in the postseismic slip model

    θo/d b/a exp[Δτco/()] Δτco/( RMS $ r_{\rm d}^2$
    0.174 700 212 670 846 1.129 714 920 608 64 60 844.601 650 449 9 4.784 222 052 123 64 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 212 368 259 1.129 714 920 027 86 60 844.601 626 682 0 4.784 222 051 953 99 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 213 831 794 1.129 714 921 162 83 60 844.601 370 971 4 4.784 222 050 128 78 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 212 381 837 1.129 714 920 578 23 60 844.601 713 419 6 4.784 222 052 573 10 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 212 075 125 1.129 714 919 810 53 60 844.601 679 670 0 4.784 222 052 332 20 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 212 385 557 1.129 714 920 392 20 60 844.601 712 262 3 4.784 222 052 564 84 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 212 418 767 1.129 714 919 972 89 60 844.601 611 131 1 4.784 222 051 842 99 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 213 236 443 1.129 714 920 438 69 60 844.601 424 260 9 4.784 222 050 509 15 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 214 115 631 1.129 714 921 173 05 60 844.601 283 946 5 4.784 222 049 507 62 4.723 176 877 126 94 0.999 064 715 754 963
    0.174 700 211 246 645 1.129 714 919 459 10 60 844.601 866 461 2 4.784 222 053 665 47 4.723 176 877 126 94 0.999 064 715 754 963
    注:表中θo∈[0,1],b/a∈[0,5],exp[Δτco/()]∈[0,106] (Dieterich,2007)。
    下载: 导出CSV
  • 陈学忠, 李艳娥, 郭祥云. 2008. 2008年5月12日四川汶川8.0级地震前后震源区应力水平估计[J]. 国际地震动态, (6): 1-3.

    Chen X Z, Li Y E, Guo X Y. 2008. Estimation of the stress levels in the focal region before and after the May 12, 2008 Wenchuan, Sichuan earthquake with MS8.0[J]. Recent Developments in World Seismology, (6): 1-3 (in Chinese).

    陈运泰, 杨智娴, 张勇, 刘超. 2013. 从汶川地震到芦山地震[J]. 中国科学: 地球科学, 43(6): 1064-1072.

    Chen Y T, Yang Z X, Zhang Y, Liu C. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Science China :Earth Science, 43(6): 1064-1072 (in Chinese).

    国家地震科学数据共享中心. 2017. 中国台网统一地震目录[EB/OL]. [2017–09–01]. http://data.earthquake.cn/gcywfl/index.html.

    Chinese Earthquake Datacenter. 2017. The uniform catalog of China Seismic Network[EB/OL]. [2017–09–01]. http://data.earthquake.cn/gcywfl/index.html (in Chinese).

    焦青, 杨选辉, 许丽卿, 王博. 2008. 汶川8.0级地震前后龙门山断裂活动特征浅析[J]. 大地测量与地球动力学, 28(4): 7-11, 37.

    Jiao Q, Yang X H, Xu L Q, Wang B. 2008. Preliminary study on motion characteristics of Longmenshan fault before and after MS8.0 Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics, 28(4): 7-11, 37 (in Chinese).

    申文豪, 刘博研, 史保平. 2013. 汶川MW7.9地震余震序列触发机制研究[J]. 地震学报, 35(4): 461-476.

    Shen W H, Liu B Y, Shi B P. 2013. Triggering mechanism of aftershocks triggered by Wenchuan MW7.9 earthquake[J]. Acta Seismologica Sinica, 35(4): 461-476 (in Chinese).

    田勤俭, 刁桂苓, 郝平, 冯向东, 孙晴. 2009. 汶川8.0级地震及余震破裂的地质构造特征[J]. 地震, 29(1): 141-148.

    Tian Q J, Diao G L, Hao P, Feng X D, Sun Q. 2009. Earthquake geology of the Wenchuan M8.0 mainshock and its aftershocks[J]. Earthquake, 29(1): 141-148 (in Chinese).

    张培震, 徐锡伟, 闻学泽, 冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073.

    Zhang P Z, Xu X W, Wen X Z, Ran Y K. 2008. Slip rates and recurrence intervals of the Longmenshan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 54(4): 1066-1073 (in Chinese).

    张勇, 冯万鹏, 许力生, 周成虎, 陈运泰. 2008. 2008年汶川大地震的时空破裂过程[J]. 中国科学: D辑, 38(10): 1186-1194.

    Zhang Y, Feng W P, Xu L S, Zhou C H, Chen Y T. 2009. Spatial and temporal rupture process of 2008 MW7.8 Wenchuan earthquake, China[J]. Science in China: Series D, 52(2): 145-154.

    张致伟, 程万正, 阮祥, 吴朋. 2009. 汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征[J]. 地震学报, 31(2): 117-127.

    Zhang Z W, Cheng W Z, Ruan X, Wu P. 2009. Seismicity and tectonic stress of the Longmenshan fault zone before 2008 Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica, 31(2): 117-127 (in Chinese).

    Ader T J, Lapusta N, Avouac J P, Ampuero J P. 2014. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations[J]. Geophys J Int, 198(1): 385-413.

    Ariyoshi K, Hori T, Ampuero J P, Kaneda Y, Matsuzawa T, Hino R, Hasegawa A. 2009. Influence of interaction between small asperities on various types of slow earthquakes in a 3-D simulation for a subduction plate boundary[J]. Gondwana Res, 16(3/4): 534-544.

    Barbot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. J Geophys Res, 114(B7): B07405.

    Beeler N M, Lockner D A. 2003. Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence[J]. J Geophys Res, 108(B8): 2391.

    Beeler N M. 2004. Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation[J]. Pure Appl Geophys, 161(9/10): 1853-1876.

    Bizzarri A. 2012. What can physical source models tell us about the recurrence time of earthquakes?[J]. Earth-Sci Rev, 115(4): 304-318.

    Blanpied M L, Tullis T E, Weeks J D. 1998. Effects of slip, slip rate, and shear heating on the friction of granite[J]. J Geophys Res, 103(B1): 489-511.

    Dieterich J H. 1978. Preseismic fault slip and earthquake prediction[J]. J Geophys Res, 83(B8): 3940-3948.

    Dieterich J H. 1992. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics, 211(1/2/3/4): 115-134.

    Dieterich J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res, 99(B2): 2601-2618.

    Dieterich J H. 2007. Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence[G]// Treatise on Geophysics, Volume 4: Earthquake Seismology. Amsterdam: Elsevier: 107–129.

    Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Ann Rev Earth Planet Sci, 33: 335-367.

    Freedman D, Pisani R, Purves R. 2007. Statistics[M]. New York: W W Norton & Company Inc: 185–187.

    Gomberg J, Reasenberg P, Cocco M, Belardinelli M E. 2005. A frictional population model of seismicity rate change[J]. J Geophys Res, 110(B5): B05S03.

    Hainzl S, Marsan D. 2008. Dependence of the Omori-Utsu law parameters on main shock magnitude: Observations and modeling[J]. J Geophys Res, 113(B10): B10309.

    Hainzl S, Steacy S, Marsan D. 2010. Seismicity models based on Coulomb stress calculations[EB/OL]. [2010–10–10]. http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/Hainzl-et-al-2010-CORSSA-Coulomb-models.pdf.

    Hainzl S, Christophersen A, Rhoades D, Harte D. 2016. Statistical estimation of the duration of aftershock sequences[J]. Geophys J Int, 205(2): 1180-1189.

    He C R, Luo L, Hao Q M, Zhou Y S. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. J Geophys Res, 118(7): 3408-3430.

    Helmstetter A, Shaw B E. 2009. Afterslip and aftershocks in the rate-and-state friction law[J]. J Geophys Res, 114(B1): B01308.

    Hirose T, Shimamoto T. 2005. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes[J]. Bull Seismol Soc Am, 95(5): 1666-1673.

    Hsu Y J, Segall P, Yu S B, Kuo L C, Williams C A. 2007. Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake[J]. Geophys J Int, 169(2): 367-379.

    Hsu Y J, Simons M, Avouac J P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra[J]. Science, 312(5782): 1921-1926.

    Huang Y, Wu J P, Zhang T Z, Zhang D N. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China: Series D, 51(12): 1703-1711.

    Ide S, Takeo M. 1997. Determination of constitutive relations of fault slip based on seismic wave analysis[J]. J Geophys Res, 102(B12): 27379-27391.

    Jia K, Zhou S Y, Zhuang J C, Jiang C S. 2014. Possibility of the independence between the 2013 Lushan earthquake and the 2008 Wenchuan earthquake on Longmenshan fault, Sichuan, China[J]. Seismol Res Lett, 85(1): 60-67.

    Kame N, Fujita S, Nakatani M, Kusakabe T. 2013. Effects of a revised rate- and state-dependent friction law on aftershock triggering model[J]. Tectonophysics, 600: 187-195.

    King D S H, Marone C. 2012. Frictional properties of olivine at high temperature with applications to the strength and dynamics of the oceanic lithosphere[J]. J Geophys Res, 117(B12): B12203.

    Kisslinger C, Jones L M. 1991. Properties of aftershock sequences in southern California[J]. J Geophys Res, 96(B7): 11947-11958.

    Mainardi F, Spada G. 2012. On the viscoelastic characterization of the Jeffreys-Lomnitz law of creep[J]. Rheol Acta, 51(9): 783-791.

    Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Ann Rev Earth Planet Sci, 26: 643-696.

    Marone C J, Scholtz C H, Bilham R. 1991. On the mechanics of earthquake after slip[J]. J Geophys Res, 96(B5): 8441-8452.

    Mignan A, Woessner J. 2012. Estimating the magnitude of completeness for earthquake catalogs[EB/OL]. [2012-04-01]. http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/Mignan-Woessner-2012-CORSSA-Magnitude-of-completeness.pdf.

    Montesi L G J. 2004. Controls of shear zone rheology and tectonic loading on postseismic creep[J]. J Geophys Res, 109(B10): B10404.

    Motulsky H J, Ransnas L A. 1987. Fitting curves to data using nonlinearregression: A practical and nonmathematical review[J]. FASEB J, 1(5): 365-374.

    Omori F. 1894. On the after-shocks of earthquakes[J]. J Coll Sci Imp Univ of Tokyo, 7(2): 111-200.

    Perfettini H, Avouac J P. 2004. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan[J]. J Geophys Res, 109(B2): B02304.

    Paterson M S, Wong T F. 2005. Experimental Rock Deformation: The Brittle Field[M]. Berlin: Springer Science & Business Media: 187.

    Perfettini H, Avouac J P. 2007. Modeling afterslip and aftershocks following the 1992 Landers earthquake[J]. J Geophys Res, 112(B7): B07409.

    Perfettini H, Ampuero J P. 2008. Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip[J]. J Geophys Res, 113(B9): B09411.

    Perfettini H, Avouac J P. 2014. The seismic cycle in the area of the 2011 MW9.0 Tohoku-Oki earthquake[J]. J Geophys Res, 119(5): 4469-4515.

    Remy D, Perfettini H, Cotte N, Avouac J P, Chlieh M, Bondoux F, Sladen A, Tavera H, Socquet A. 2016. Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake[J]. J Geophys Res, 121(5): 3978-3995.

    Rice J R, Ruina A L. 1983. Stability of steady frictional slipping[J]. J Appl Mech, 50(2): 343-349.

    Rice J R. 1983. Constitutive relations for fault slip and earthquake instabilities[J]. Pure Appl Geophys, 121(3): 443-475.

    Rubin A M, Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. J Geophys Res, 110(B11): B11312.

    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res, 88(B12): 10359-10370.

    Savage J C, Svarc J L, Yu S B. 2007. Postseismic relaxation and aftershocks[J].J Geophys Res, 112(B6): 1–19.

    Savage J C. 2010. Calculation of aftershock accumulation from observed postseismic deformation: M6 2004 Parkfield, California, earthquake[J]. Geophys Res Lett, 37(13): L13302.

    Scholz C H. 1990. The Mechanics of Earthquakes and Faulting[M]. New York: Cambridge University Press: 263–265.

    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37-42.

    Segall P. 2010. Earthquake and Volcano Deformation[M]. Princeton: Princeton University Press: 339–348.

    Shen W H, Li Y S, Zhang J F.2017. Hybrid stochastic ground motion modeling of the MW7.8 Gorkha, Nepal earthquake of 2015 based on InSAR inversion[J]. Journal of Asian Earth Sciences, 141:

    Shen Z K, Sun J B, Zhang P Z, Wan Y G, Wang M, Bürgmann R, Zeng Y H, Gan W J, Liao H, Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nat Geosci, 2(10): 718-724.

    Sladen A. 2008. Preliminary result 05/12/2008 (MW7.9), east Sichuan[EB/OL]. [2012–06–21]. http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html.

    Tahir M, Grasso J R. 2012. Faulting style controls on the Omori law parameters from global earthquake catalogs[EB/OL]. [2012–01–19]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.461.1272.

    Tsutsumi A, Shimamoto T. 1997. High-velocity frictional properties of gabbro[J]. Geophys Res Lett, 24(6): 699-702.

    Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Mag, 30: 521-605.

    Utsu T, Ogata Y, Matsu’ura R S. 1995. The centenary of the Omori formula for a decay law of aftershock activity[J]. J Phys Earth, 43(1): 1-33.

    Utsu T. 2002. Statistical features of seismicity[J]. Int Geophys, 81: 719-732.

    Wang K, Fialko Y. 2014. Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake[J]. J Geophys Res, 119(7): 7306-7318.

  • 期刊类型引用(9)

    1. 薛思敏,黄汉明,施佳鹏,袁雪梅,黎炳君. 基于EMD的IMF时域统计特征提取及其应用于震动事件源类型识别研究. 地震工程学报. 2022(01): 100-107 . 百度学术
    2. 庞聪,王磊,马武刚,江勇,廖成旺. 地震与爆破波形信号的EEMD多尺度分布熵提取和WOA-SOM神经网络识别研究. 大地测量与地球动力学. 2022(09): 980-984 . 百度学术
    3. 梁宏,朱永莉,李大虎,刘雪梅,陈学芬,黄雪影,赵晶. 基于希尔伯特-黄变换的九寨沟M7.0地震加速度记录时频分析. 国际地震动态. 2019(07): 9-16 . 百度学术
    4. 梁宏,李大虎,陈学芬,刘雪梅,陈兵,赵晶,赵天霞. 2014-11-22康定M_S6.3地震加速度记录的时频分析与震害特征. 大地测量与地球动力学. 2019(08): 875-880 . 百度学术
    5. 吕国军,张合,李皓,李姜,李胜强. 河北尚义M4.0地震加速度记录时频特性分析. 地震地磁观测与研究. 2018(06): 136-142 . 百度学术
    6. 柴凯,张梅军,黄杰,赵晶. 基于SVD-SGWT和IMF能量熵增量的液压故障特征提取. 机械设计与制造. 2015(03): 51-54 . 百度学术
    7. 李大虎,李军,邓艳,严媚,安东妮,黄成程,汤才成. 云南香格里拉、德钦—四川得荣交界5.9级地震加速度记录的时频分析. 物探化探计算技术. 2015(06): 716-723 . 百度学术
    8. 谢兴隆,孙晟,王彦春,任政委,李晶晶. 基于EEMD的地震瞬时属性在砂砾岩中的应用. 物探与化探. 2014(04): 717-722 . 百度学术
    9. 李大虎,梁明剑,黎小刚,顾勤平. 2011年四川炉霍M_S5.3地震加速度记录的时频分析与能量计算. 西北地震学报. 2012(04): 335-341+358 . 百度学术

    其他类型引用(5)

图(4)  /  表(3)
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  758
  • PDF下载量:  66
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-10-16
  • 网络出版日期:  2018-04-25
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回