近断层地震动最强速度脉冲方向分量特性研究

赵晓芬, 温增平, 陈波

赵晓芬, 温增平, 陈波. 2018: 近断层地震动最强速度脉冲方向分量特性研究. 地震学报, 40(5): 673-688. DOI: 10.11939/jass.20170151
引用本文: 赵晓芬, 温增平, 陈波. 2018: 近断层地震动最强速度脉冲方向分量特性研究. 地震学报, 40(5): 673-688. DOI: 10.11939/jass.20170151
Zhao Xiaofen, Wen Zengping, Chen Bo. 2018: Characteristics of near-fault velocity pulses in the strongest pulse orientation. Acta Seismologica Sinica, 40(5): 673-688. DOI: 10.11939/jass.20170151
Citation: Zhao Xiaofen, Wen Zengping, Chen Bo. 2018: Characteristics of near-fault velocity pulses in the strongest pulse orientation. Acta Seismologica Sinica, 40(5): 673-688. DOI: 10.11939/jass.20170151

近断层地震动最强速度脉冲方向分量特性研究

基金项目: 国家自然科学基金(51378477,51508527)、中国地震局地球物理研究所基本业务费(DQJB15B05)和中国地震局地球物理研究所基本科研业务团队创新项目(DQJB17T04)共同资助
详细信息
    通讯作者:

    温增平: e-mail: wenzp@cea-igp.ac.cn

  • 中图分类号: P315.9

Characteristics of near-fault velocity pulses in the strongest pulse orientation

  • 摘要: 为了研究速度脉冲型地震动的最强速度脉冲方向分量与垂直或平行断层方向分量之间的特性差异,本文采用多分量速度脉冲识别方法从NGA-West2强震动数据库的236组近断层地震动速度脉冲记录中提取出最强速度脉冲方向分量,对其脉冲参数随震级MW和断层距R变化的统计关系式进行了回归分析,并对比了最强速度脉冲方向分量与垂直或平行断层方向分量之间的特性差异。研究结果表明:当R<30 km时,最强速度脉冲方向分量的脉冲幅值预测值较垂直或平行断层方向分量的预测值大,而当R>30 km时,两种分量的脉冲幅值预测值相差不大,可以忽略;当MW≤7.5时,最强速度脉冲方向分量的脉冲周期预测值比垂直或平行断层方向分量的预测值大,而当MW>7.5时,两种分量的脉冲周期预测值差异不大,可以忽略。
    Abstract: In order to explore the characteristic difference of velocity pulse between the strongest velocity pulse component and those of the vertical fault or parallel fault component, the strongest pulse orientation components were extracted from 236 groups of near-fault ground motion velocity pulse records of the strong ground motion database NGA-West2 by using the multi-components velocity pulse identification method. Then, relationships of the pulse amplitude and the period with magnitude and fault distance were also analyzed by regression. Finally, characteristics of pulses in the strongest pulse orientation and in vertical or parallel fault orientation were compared. The following conclusions can be made: When the fault distance is less than 30 km, the predicted value of the peak ground velocity in the strongest pulse orientation is larger than that in the vertical or parallel fault orientation. However, with the increase of the fault distance, the difference of the peak velocities in the two orientations can be neglected. The pulse period is smaller in the strongest pulse orientation than in the vertical or parallel fault orientation for records with magnitude MW smaller than 7.5, whereas when magnitude MW is greater than 7.5, the difference of the pulse period between the two orientations can be ignored.
  • 图  1   最强速度脉冲方向分量的空间取向参数(平行断层走向和正北方向)

    Figure  1.   The spatial orientation parameters of the strongest pulse (parallel to the strike of the fault and the positive north direction)

    图  2   汶川地震中绵竹清平(51MZQ)台记录到的最强速度脉冲方向分量和其它4个方向分量的速度时程

    Figure  2.   The time histories of different orientations of the velocity pulse-like recorded at the station 51MZQ during the 2008 Wenchuan earthquake

    图  3   按震级MW (a)和断层距R (b)分组情形下236组速度脉冲记录中各组脉冲的出现频次直方图

    Figure  3.   Histogram of pulse frequency of 236 sets of velocity pulse records in each group in accordance with moment magnitude MW (a) and with fault distance R (b)

    图  4   速度脉冲幅值PGV随震级MW和断层距R的变化

    Figure  4.   Variation of velocity pulse amplitude PGV with moment magnitude MW and fault distance R

    图  5   本文回归得到的速度脉冲幅值PGV随震级MW和断层距R的变化规律模型及其与前人结果的比较

    Figure  5.   Fitted model for velocity pulse amplitude PGV with moment magnitude MW and fault distance R and its comparison with previous models

    图  6   本文回归得到的速度脉冲周期Tp随震级MW变化的定量关系及其与前人结果的比较

    Figure  6.   Fitted curve for velocity pulse period Tp with MW obtained by regression analysis in this study and its comparison with previous models

    图  7   脉冲作用放大系数Af随周期比值T/Tp的变化

    Figure  7.   Variation of pulse amplification coefficient Af with period ratio T/Tp

    表  1   前5个最大小波系数对应方向分量的参数

    Table  1   The parameters of orientation components with top five of the largest wavelet coefficients

    方向分量 PGV/(cm·s−1 Ip c β
    最强速度脉冲
    方向分量
    145.89 9.60 1 837.70 25.39
    方向分量1 146.71 9.77 1 666.80 36.03
    方向分量2 138.63 1.49 1 258.90 9.05
    方向分量3 140.00 10.99 1 340.70 17.89
    方向分量4 140.69 4.02 954.50 11.91
    下载: 导出CSV

    1   236条速度脉冲的相关参数

    1   Parameters of 236 pulse ground motions

    序号 地震地点 台站名称 年份 MW R
    /km
    PGV
    /(cm·s−1
    Tp
    /s
    vS30
    /(cm·s−1
    断层
    类型
    20 Northern Calif-03 Ferndale City Hall 1954 6.5 27.00 40.29 2.00 219.31 0
    51 Wenchuan,China Deyangbaima 2008 7.9 30.50 37.40 6.75 418.21 3
    52 Wenchuan,China Mianzuqingping 2008 7.9 6.60 146.94 9.37 551.30 3
    77 San Fernando Pacoima Dam (upper left abut) 1971 6.6 1.80 121.73 1.64 2016.13 2
    143 Tabas,Iran Tabas 1978 7.3 2.00 129.56 6.19 766.77 2
    147 Coyote Lake Gilroy Array #2 1979 5.7 9.00 31.92 1.46 270.84 0
    148 Coyote Lake Gilroy Array #3 1979 5.7 7.40 30.75 1.16 349.85 0
    149 Coyote Lake Gilroy Array #4 1979 5.7 5.70 32.03 1.35 221.78 0
    150 Coyote Lake Gilroy Array #6 1979 5.7 3.10 49.53 1.23 663.31 0
    159 Imperial Valley-06 Agrarias 1979 6.5 0.70 53.45 2.34 242.05 0
    161 Imperial Valley-06 Brawley Airport 1979 6.5 10.40 36.64 4.40 208.71 0
    170 Imperial Valley-06 EC County Center FF 1979 6.5 7.30 70.75 4.42 192.05 0
    171 Imperial Valley-06 El Centro-Meloland Geot. Array 1979 6.5 0.10 116.27 3.42 264.57 0
    173 Imperial Valley-06 El Centro Array #10 1979 6.5 8.60 55.12 4.52 202.85 0
    178 Imperial Valley-06 El Centro Array #3 1979 6.5 12.90 55.78 4.50 162.94 0
    179 Imperial Valley-06 El Centro Array #4 1979 6.5 7.00 80.75 4.79 208.91 0
    180 Imperial Valley-06 El Centro Array #5 1979 6.5 4.00 96.38 4.13 205.63 0
    181 Imperial Valley-06 El Centro Array #6 1979 6.5 1.40 121.50 3.77 203.22 0
    182 Imperial Valley-06 El Centro Array #7 1979 6.5 0.60 111.80 4.38 210.51 0
    184 Imperial Valley-06 El Centro Differential Array 1979 6.5 5.10 73.45 6.27 202.26 0
    185 Imperial Valley-06 Holtville Post Office 1979 6.5 7.50 73.28 4.82 202.89 0
    204 Imperial Valley-07 El Centro Array #6 1979 5 10.40 26.02 0.69 203.22 0
    250 Mammoth Lakes-06 Long Valley Dam (Upr L Abut) 1980 5.9 16.00 43.22 1.02 483.87 0
    285 Irpinia,Italy-01 Bagnoli Irpinio 1980 6.9 8.20 38.08 1.71 594.96 1
    292 Irpinia,Italy-01 Sturno (STN) 1980 6.9 10.80 71.02 3.27 382.00 1
    316 Westmorland Parachute Test Site 1981 5.9 16.70 60.69 4.39 348.69 0
    319 Westmorland Westmorland Fire Sta 1981 5.9 6.50 52.84 1.22 193.67 0
    372 Coalinga-02 Anticline Ridge Free-Field 1983 5.1 11.60 26.26 0.26 437.79 2
    373 Coalinga-02 Anticline Ridge Pad 1983 5.1 11.60 23.29 0.27 437.79 2
    415 Coalinga-05 Transmitter Hill 1983 5.8 9.50 64.34 0.88 434.83 2
    418 Coalinga-07 Coalinga-14th & Elm (Old CHP) 1983 5.2 10.90 32.80 0.44 286.77 2
    451 Morgan Hill Coyote Lake Dam (SW Abut) 1984 6.2 0.50 76.68 1.07 491.97 0
    459 Morgan Hill Gilroy Array #6 1984 6.2 9.90 37.25 1.23 663.31 0
    503 Taiwan SMART1 (40),China SMART1 C00 1986 6.3 59.90 34.76 1.57 309.41 2
    504 Taiwan SMART1 (40),China SMART1 E01 1986 6.3 57.30 36.86 1.39 308.39 2
    505 Taiwan SMART1 (40),China SMART1 I01 1986 6.3 60.10 32.84 1.57 275.82 2
    506 Taiwan SMART1 (40),China SMART1 I07 1986 6.3 59.70 33.92 1.67 309.41 2
    507 Taiwan SMART1 (40),China SMART1 M01 1986 6.3 60.90 26.05 1.39 268.37 2
    508 Taiwan SMART1 (40),China SMART1 M07 1986 6.3 58.90 40.34 1.54 327.61 2
    510 Taiwan SMART1 (40),China SMART1 O07 1986 6.3 58.00 28.68 1.53 314.33 2
    下载: 导出CSV

    表  2   速度脉冲幅值随震级MW和断层距R变化规律的统计模型

    Table  2   Predictive relationships of variation of velocity pulse amplitude PGV with magnitude MW and fault distance R

    统计模型 表达式 脉冲分量
    Somerville (1998) $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.5{M_{\rm W}} - 0.5\lg R - 1.0$ 垂直或平行于断层走向的分量
    Tang和Zhang (2011) $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.07{M_{\rm W}} - 0.19\lg R {\simfont\text{+}} 1.44$ 垂直或平行于断层走向的分量
    本文统计模型 $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.105{M_{\rm W}} - 0.244\lg R {\simfont\text{+}} 1.289$ 最强速度脉冲方向分量
    下载: 导出CSV

    表  3   速度脉冲周期Tp随震级MW变化关系的统计模型

    Table  3   Predictive relationships of variation of velocity pulse period Tp with magnitude MW

    统计模型 表达式 脉冲分量 脉冲类型 标准差
    Bray和Rodriguez-Marek (2004) $\scriptstyle \ln {T_{\rm p}}{\simfont\text{=}} 1.03{M_{\rm W}} {\simfont\text{-}} 6.37$ 垂直或平行断层分量 不区分脉冲类型 0.38
    Baker (2007) $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.02{M_{\rm W}} {\simfont\text{-}} 5.78$ 垂直或平行断层分量 不区分脉冲类型 0.55
    Shahi和Baker (2013) $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.075{M_{\rm W}} {\simfont\text{-}}6.207$ 最强速度脉冲方向分量 前方向性效应速度脉冲 0.61
    本文统计模型 $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.123{M_{\rm W}} {\simfont\text{-}} 6.548$ 最强速度脉冲方向分量 不区分脉冲类型 0.54
    下载: 导出CSV

    表  4   不同方向分量的脉冲放大作用最强值及对应周期比的对比

    Table  4   Comparison of the strongest pulse amplifications Af and corresponding largeset periods T/Tp in different pulse-like orientations

    方法 max( $\scriptstyle \overline A{{_{\rm f}}} $ peak(T/Tp 脉冲方向
    Shahi和Baker (2013) 3.28 0.88 最强速度脉冲方向
    本文结果 3.44 1.05 垂直断层走向
    注:max(Af)表示脉冲对加速度反应谱放大系数曲线的峰值,peak(T/Tp)表示放大作用系数曲线峰值所对应的周期比值。
    下载: 导出CSV
  • 常志旺,翟长海,李爽,谢礼立. 2013. 近场地震动速度脉冲周期的确定[J]. 土木工程学报,46(增刊2):130–134

    Chang Z W,Zhai C H,Li S,Xie L L. 2013. Determination of the pulse period for near-fault pulse-like ground motions[J]. China Civil Engineering Journal,46(S2):130–134 (in Chinese)

    常志旺. 2014. 近场脉冲型地震动的量化识别及特性研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院: 43−65.

    Chang Z W. 2014. Quantitative Identification and the Characteristics of Near-Fault Pulse-Like Ground Motions[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology: 43−65 (in Chinese).

    陈波,谢俊举,温增平. 2013. 汶川地震近断层地震动作用下结构地震响应特征分析[J]. 地震学报,35(2):250–261

    Chen B,Xie J J,Wen Z P. 2013. Analysis of the seismic response characteristics of building structures subjected to near-fault ground motions from Wenchuan earthquake[J]. Acta Seismologica Sinica,35(2):250–261 (in Chinese)

    李明,谢礼立,翟长海. 2009. 近断层脉冲型地震动重要参数的识别方法[J]. 世界地震工程,25(4):1–6

    Li M,Xie L L,Zhai C H. 2009. Identification methods of important parameters for near-fault pulse-type ground motions[J]. World Earthquake Engineering,25(4):1–6 (in Chinese)

    李新乐,朱晞. 2004. 近断层地震动等效速度脉冲研究[J]. 地震学报,26(6):634–643

    Li X L,Zhu X. 2004. Study on equivalent velocity pulse of near-fault ground motions[J]. Acta Seismologica Sinica,26(6):634–643 (in Chinese)

    刘启方,袁一凡,金星,丁海平. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动,26(1):1–10

    Liu Q F,Yuan Y F,Jin X,Ding H P. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration,26(1):1–10 (in Chinese)

    王宇航. 2015. 近断层区域划分及近断层速度脉冲型地震动模拟[D]. 成都: 西南交通大学土木工程学院: 7.

    Wang Y H. 2015. The Near-Fault Region Zoning and Near-Fault Velocity Pulse-Like Ground Motion Simulation[D]. Chengdu: School of Civil Engineerig, Southwest Jiaotong University: 7 (in Chinese).

    韦韬,赵凤新,张郁山. 2006. 近断层速度脉冲的地震动特性研究[J]. 地震学报,28(6):629–637

    Wei T,Zhao F X,Zhang Y S. 2006. Characteristics of near-fault ground motion containing velocity pulses[J]. Acta Seismologica Sinica,28(6):629–637 (in Chinese)

    谢俊举,温增平,高孟潭,袁美巧,何少林. 2011. 2008年汶川地震近断层地震动的非平稳特征[J]. 地球物理学报,54(3):728–736

    Xie J J,Wen Z P,Gao M T,Yuan M Q,He S L. 2011. Non-stationary characteristics of near-fault strong motions during the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(3):728–736 (in Chinese)

    谢俊举,温增平,李小军,李亚琦,吕红山,黄隽彦. 2012. 基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J]. 地球物理学报,55(6):1963–1972

    Xie J J,Wen Z P,Li X J,Li Y Q,Lü H S,Huang J Y. 2012. Analysis of velocity pulses for near-fault strong motions from the Wenchuan earthquake based on wavelet method[J]. Chinese Journal of Geophysics,55(6):1963–1972 (in Chinese)

    赵晓芬. 2015. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7−30.

    Zhao X F. 2015. Study on Strong Motion Velocity Pulse Identification Method and Influence on Isolated Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7−30 (in Chinese).

    Baker W J. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501

    Boore D M. 2006. Orientation-independent measures of ground motion[J]. Bull Seismol Soc Am,96(4A):1502–1511

    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828

    Chang Z W,Sun X D,Zhai C H,Zhao J X,Xie L L. 2016. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthq Eng Struct Dyn,45(14):2405–2411

    Hayden C P,Bray J D,Abrahamson N A. 2014. Selection of near-fault pulse motions[J]. J Geotech Geoenviron Eng,140(7):04014030

    Howard J K,Tracy C A,Burns R G. 2005. Comparing observed and predicted directivity in near-source ground motion[J]. Earthq Spectra,21(4):1063–1092

    Kalkan E,Kunnath S K. 2006. Effects of fling step and forward directivity on seismic response of building[J]. Earthq Spectra,22(2):367–390

    Mavroeidis G P,Papageorgiou A S. 2003. A mathematical representation of near-fault ground motions[J]. Bull Seismol Soc Am,93(3):1099–1131

    Shahi S K,Baker J W. 2011. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bull Seismol Soc Am,101(2):742–755

    Shahi S K, Baker J W. 2013. A Probabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment[R]. Berkeley: Pacific Earthquake Engineering Research Center, University of California: 1−77.

    Shahi S K,Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bull Seismol Soc Am,104(5):2456–2466

    Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett,68(1):199–222

    Somerville P G. 1998. Development of an improved representation of near fault ground motions[C]//Proceedings of SMIP98 Seminar on Utilization of Strong-Motion Data. Oakland: Division of Mines and Geology of the California Department of Conservation: 1−20.

    Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse[J]. Phys Earth Planet Inter,137(1/4):201–212

    Tang Y C,Zhang J. 2011. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions[J]. Soil Dyn Earthq Eng,31(1):59–76

    Yang D X,Zhou J L. 2015. A stochastic model and synthesis for near-fault impulsive ground motions[J]. Earthq Eng Struct Dyn,44(2):243–264

    Zhai C H,Chang Z W,Li S,Chen Z Q,Xie L L. 2013. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bull Seismol Soc Am,103(5):2591–2603

图(7)  /  表(5)
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  742
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-25
  • 修回日期:  2018-03-01
  • 网络出版日期:  2018-08-22
  • 发布日期:  2018-08-31

目录

    /

    返回文章
    返回