Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes
-
摘要: 采用多井对多震的方式,选取山东省地下流体观测井网中同震响应较好的6口观测井作为研究对象,分别从水位变化形态和幅度对比分析2011年日本MW9.0地震、2012年苏门答腊MW8.6地震和2015年尼泊尔MW7.8地震引起的井水位变化特征,探讨引起该变化的可能机理。研究结果显示:水位同震变化形态以振荡为主;通过定量分析认为聊古一井井水位的阶升是由含水层渗透系数增大所致;位于同一断裂带上的聊古一井和鲁27井井水位在同一地震中所表现的变化形态不同,可能与两个观测井所处的地质构造条件和地震活动背景不同有关;区域应力场的变化会影响栖霞鲁07井的水位同震变化形态;水位同震变化幅度与震级、井震距存在一定关系,同时也取决于含水层水文地质条件的变化量。Abstract: In the form of multi-well to multi-earthquake, six wells with good coseismic responses in the underground fluid observation network of Shandong Province are selected to analyze the coseismic variations of water level caused by the Japan MW9.0 earthquake, the Sumatra MW8.6 earthquake and the Nepal MW7.8 earthquake. We analyze the characteristics in the aspects of type and amplitude, and discuss the response mechanism. The results show that the major type of coseismic variations is oscillation. With quantitative analysis, we find that the rise of Liaogu-1 water level is due to the increase of permeability coefficient of aquifer. The different types between Liaogu-1 well and Lu-27 well on the same fault zone are due to the different regional geological conditions and seismic activities. The water level coseismic variation type of Lu-07 well is affected by local tectonic stress. The amplitude of water level coseismic variation is related to the magnitude and the distance between well and epicenter, and also depends on the change of hydrogeological condition.
-
Keywords:
- water level /
- earthquake /
- coseismic response /
- aquifer /
- Shandong Province
-
-
表 1 观测井基本参数
Table 1 Basic parameters of six wells
井孔名称 井深/m 所处断裂带 含水层岩性 观测仪器型号 采样率/(次·分钟−1) 聊古一井 2 337 聊考断裂带北段 灰岩 LN-3A 1 昌邑鲁02井 1 172 昌邑—大店断裂 砂岩 LN-3A 1 栖霞鲁07井 600 莱阳、栖霞、福山断裂交会处 花岗岩 LN-3A 1 商河鲁09井 2 836 济阳凹陷 灰岩 LN-3A 1 枣庄鲁15井 501 韩庄断裂北侧 砂岩 LN-3A 1 菏泽鲁27井 2 000 聊考断裂带东侧 灰岩 LN-3A 1 表 2 水位同震变化主要参数
Table 2 Main parameters of water level coseismic variations
日本MW9.0地震 苏门答腊MW8.6地震 尼泊尔MW7.8地震 井震距/km 形态 振幅/cm 井震距/km 形态 振幅/cm 井震距/km 形态 振幅/cm 聊古一井 2 353 阶升 26.5 4 471 阶升 9.3 3 072 阶升 12.1 昌邑鲁02井 2 050 振荡 3.4 4 697 振荡 1.1 3 374 振荡 1.0 栖霞鲁07井 1 914 振荡 51.7 4 828 振荡 2.9 3 508 阶升 1.1 商河鲁09井 2 220 振荡 48.7 4 612 振荡 9.3 3 200 振荡 2.4 枣庄鲁15井 2 275 振荡 7.7 4 415 振荡 1.8 3 176 振荡 0.6 菏泽鲁27井 2 445 振荡 48.1 4 337 振荡 21.3 2 990 振荡 9.6 表 3 聊古一井井水位M2波潮汐参数
Table 3 Tidal parameters of M2 wave for the water level of Liaogu-1 well
日本MW9.0地震 苏门答腊MW8.6地震 尼泊尔MW7.8地震 震前 震后 震前 震后 震前 震后 潮汐因子 2.05 2.19 2.15 2.14 2.01 2.05 相位差/° −5.20 −5.20 −6.83 −5.93 −9.67 −7.49 注:相位差为“–”代表相位滞后. 表 4 聊城—兰考断裂带各段上下盘地层厚度分布与断层特征表
Table 4 The strata thickness and fault characters of the Liaocheng-Lankao fault
层底 北段 中段 南段 上盘厚度/m 下盘厚度/m 落差/m 上盘厚度/m 下盘厚度/m 落差/m 上盘厚度/m 下盘厚度/m 落差/m 下第三系 14×103 0 14×103 4.5×103 0 4.5×103 7×103 0 7×103 上第三系 1 800 800 1 000 2 000 800 1 200 2 600 1 400 1 200 第四系 300 200 ≤100 300 200 100 ≥400 250 ≥150 上更新统 60 50 10 80 65 15 80 60 20 注:数据来源于向宏发等(2000). 表 5 响应形态固定的观测井井水位同震变化幅度
Table 5 Coseismic variation amplitude of water level for observation wells with constant response type
井点名称 井震距/km 实际变幅/cm 预测变幅/cm 聊古一井 1 389 2.2 25.79 昌邑鲁02井 1 682 0.4 1.14 商河鲁09井 1 533 0.4 0.48 枣庄鲁15井 1 443 0.3 0.19 菏泽鲁27井 1 280 1.2 3.86 -
丁风和,戴勇,宋慧英,魏建民,查斯. 2015. 大甸子井-含水层系统水文地质参数间的变化关系[J]. 地震地质,37(4):982–990 doi: 10.3969/j.issn.0253-4967.2015.04.004 Ding F H,Dai Y,Song H Y,Wei J M,Cha S. 2015. The changing relationship of hydrogeological parameters of Dadianzi well-aquifer system[J]. Seismology and Geology,37(4):982–990 (in Chinese)
冯恩国,连凯旋,陈其锋,温丽媛,李月强,赵杰锋,刘保华. 2016. 聊古一井水位同震效应研究[J]. 高原地震,28(1):19–24 doi: 10.3969/j.issn.1005-586X.2016.01.004 Feng E G,Lian K X,Chen Q F,Wen L Y,Li Y Q,Zhao J F,Liu B H. 2016. Study on the coseismic effect of the Liaogu-1 well[J]. Plateau Earthquake Research,28(1):19–24 (in Chinese)
耿杰,陈安方,潘双进. 2008. 山东地下水动态观测井对2007年印尼8.5级地震的响应特征[J]. 西北地震学报,30(2):173–178 doi: 10.3969/j.issn.1000-0844.2008.02.016 Geng J,Chen A F,Pan S J. 2008. Responding characteristics of dynamic underground water in observation wells of Shandong Province to Indonesia M8.5 earthquake in 2007[J]. Northwestern Seismological Journal,30(2):173–178 (in Chinese)
黄辅琼,迟恭财,徐桂明,简春林,邓志辉. 2000. 大陆地下流体对台湾南投7.6级地震的响应研究[J]. 地震,20(增刊1):119–125 Huang F Q,Chi G C,Xu G M,Jian C L,Deng Z H. 2000. Research on the response anomalies of subsurface fluid in mainland monitoring network to the Nantou earthquake with MS7.6[J]. Earthquake,20(S1):119–125 (in Chinese)
兰双双,迟宝明,姜纪沂. 2011. 地下水位对近震和远震异常响应的比较—以汶川地震和苏门答腊地震为例[J]. 吉林大学学报:地球科学版,41(1):145–152 Lan S S,Chi B M,Jiang J Y. 2011. Comparison of groundwater-level response to near earthquake and distant earthquake:Ta-king Wenchuan earthquake and Sumatra earthquake for example[J]. Journal of Jilin University:Earth Science Edition,41(1):145–152 (in Chinese)
李俊超,康波,陈星星,王秋良. 2016. 丹江口井网流体动态与尼泊尔M8.1地震同震响应分析[J]. 大地测量与地球动力学,36(11):1025–1030 Li J C,Kang B,Chen X X,Wang Q L. 2016. Fluid dynamic and seismic response analysis of Nepal M8.1 earthquake with the Danjiangkou well network[J]. Journal of Geodesy and Geodynamics,36(11):1025–1030 (in Chinese)
刘成龙,王广才,张卫华,梅建昌. 2009. 三峡井网井水位对汶川8.0级地震的同震响应特征研究[J]. 地震学报,31(2):188–194 doi: 10.3321/j.issn:0253-3782.2009.02.008 Liu C L,Wang G C,Zhang W H,Mei J C. 2009. Coseismic response of well water level in Three Gorges well-network to MS8.0 earthquake in Wenchuan[J]. Acta Seismologica Sinica,31(2):188–194 (in Chinese)
王金维. 2013. 由井水位的固体潮效应反演含水层参数[D]. 北京: 中国地质大学(北京): 34–39. Wang J W. 2013. Obtaining Aquifer Parameter by Earth Tidal Effect[D]. Beijing: China University of Geosciences (Beijing): 34–39 (in Chinese).
王学聚,殷海涛,王鹏. 2013. 山东地下流体数字化井网对汶川8.0级地震的响应分析[J]. 地震地磁观测与研究,34(1/2):225–231 Wang X J,Yin H T,Wang P. 2013. Analysis on the responses of Shandong ground fluid digitalized well network to Wenchuan MS8.0 earthquake[J]. Seismological and Geomagnetic Observation and Research,34(1/2):225–231 (in Chinese)
向宏发,王学潮,虢顺民,郝书俭,张辉,王基华,李今朝,李如成,李洪武. 2000. 聊城—兰考隐伏断裂第四纪活动性的综合探测研究[J]. 地震地质,22(4):351–359 doi: 10.3969/j.issn.0253-4967.2000.04.003 Xiang H F,Wang X C,Guo S M,Hao S J,Zhang H,Wang J H,Li J Z,Li R C,Li H W. 2000. Integrated survey and investigation on the quaternary activity of the Liaocheng-Lankao buried fault[J]. Seismology and Geology,22(4):351–359 (in Chinese)
晏锐,黄辅琼. 2009. 黄骅井水位对苏门答腊5次地震的同震响应初步研究[J]. 中国地震,25(3):325–332 doi: 10.3969/j.issn.1001-4683.2009.03.011 Yan R,Huang F Q. 2009. Preliminary study on coseismic response of Huanghua well water level to 5 times of the Sumatra earthquakes[J]. Earthquake Research in China,25(3):325–332 (in Chinese)
杨竹转,邓志辉,高小其,黄辅琼. 2010. 新疆乌鲁木齐04号井数字化水位同震阶变的研究[J]. 中国地震,26(3):329–339 doi: 10.3969/j.issn.1001-4683.2010.03.009 Yang Z Z,Deng Z H,Gao X Q,Huang F Q. 2010. Study on coseismic drop steps of water level based on the digital observation from Xin-04 well,Urumqi,Xinjiang[J]. Earthquake Research in China,26(3):329–339 (in Chinese)
杨竹转. 2011. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所: 40–45. Yang Z Z. 2011. Coseismic Variations of Well Water Level and Temperature Caused by Earthquake Waves and Their Generating Mechanisms[D]. Beijing: Institute of Geology, China Earthquake Administration: 40–45 (in Chinese).
杨竹转,邓志辉,杨贤和,陶京玲. 2014. 2013年芦山MS7.0地震和2008年汶川MS8.0地震井水位同震变化的比较分析[J]. 地震地质,36(2):380–391 doi: 10.3969/j.issn.0253-4967.2014.02.009 Yang Z Z,Deng Z H,Yang X H,Tao J L. 2014. Comparison and analysis of well water-level variations caused by Lushan MS7.0 earthquake in 2013 and Wenchuan MS8.0 earthquake in 2008[J]. Seismology and Geology,36(2):380–391 (in Chinese)
尹宝军,马丽,陈会忠,黄建平,张晁军,王武星. 2009. 汶川8.0级地震及其强余震引起的唐山井水位同震响应特征分析[J]. 地震学报,31(2):195–204 doi: 10.3321/j.issn:0253-3782.2009.02.009 Yin B J,Ma L,Chen H Z,Huang J P,Zhang C J,Wang W X. 2009. Characteristics of coseismic water level change in Tangshan well induced by MS8.0 wenchuan earthquake and its large aftershocks[J]. Acta Seismologica Sinica,31(2):195–204 (in Chinese)
尹宏伟,梁丽环,韩文英,李凤,刘静. 2016. 河北省数字水位对尼泊尔MS8.1地震的同震响应特征研究[J]. 地震工程学报,38(增刊1):73–80 Yin H W,Liang L H,Han W Y,Li F,Liu J. 2016. Co-seismic response characteristics of digital water levels in Hebei Province during the 2015 Nepal MS8.1 earthquake[J]. China Earthquake Engineering Journal,38(S1):73–80 (in Chinese)
鱼金子,车用太,刘成龙,李万明. 2012. 金沙江水网对日本9.0级地震的同震响应及其特征与机理[J]. 地震,32(1):59–69 doi: 10.3969/j.issn.1003-1375.2012.01.012 Yu J Z,Che Y T,Liu C L,Li W M. 2012. Coseismic responses of water level and temperature in wells of the Jinshajiang groundwater observation network to the Japan MS9.0 earthquake:Characteristics and mechanism[J]. Earthquake,32(1):59–69 (in Chinese)
Blanchard F B,Byerly P. 1935. A study of a well gauge as a seismograph[J]. Bull Seismol Soc Am,25(4):313–321
Cooper Jr H H,Bredehoeft J D,Papadopulos I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926 doi: 10.1029/JZ070i016p03915
Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic wave increase permeability[J]. Nature,441(9/9):1135–1138
Huang F Q,Jian C L,Tang Y,Xu G M,Deng Z H,Chi G C. 2004. Response changes of some wells in the mainland subsurface fluid monitoring network of China,due to the September 21,1999,MS7.6 Chi-Chi earthquake[J]. Tectonophysics,390(1/4):217–234
Huang F Q,Chen Y,Ji P,Ren K X,Gao F W,Zhang L K. 2015. Co-seismic changes of well water level and volume strain meter in capital area and its vicinity,due to the Nov.14,2001 MS8.1 Kunlun mountain earthquake,China[J]. Geodesy and Geodynamics,6(6):460–466 doi: 10.1016/j.geog.2015.12.005
-
期刊类型引用(0)
其他类型引用(3)