山东省井水位对几次大地震同震响应的比较分析

刘凯, 张辉, 张军, 宋磊, 陈燕娥, 夏岩, 田兆阳, 海长洪

刘凯, 张辉, 张军, 宋磊, 陈燕娥, 夏岩, 田兆阳, 海长洪. 2019: 山东省井水位对几次大地震同震响应的比较分析. 地震学报, 41(1): 69-79. DOI: 10.11939/jass.20170161
引用本文: 刘凯, 张辉, 张军, 宋磊, 陈燕娥, 夏岩, 田兆阳, 海长洪. 2019: 山东省井水位对几次大地震同震响应的比较分析. 地震学报, 41(1): 69-79. DOI: 10.11939/jass.20170161
Liu Kai, Zhang Hui, Zhang Jun, Song Lei, Chen Yan’e, Xia Yan, Tian Zhaoyang, Hai Changhong. 2019: Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes. Acta Seismologica Sinica, 41(1): 69-79. DOI: 10.11939/jass.20170161
Citation: Liu Kai, Zhang Hui, Zhang Jun, Song Lei, Chen Yan’e, Xia Yan, Tian Zhaoyang, Hai Changhong. 2019: Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes. Acta Seismologica Sinica, 41(1): 69-79. DOI: 10.11939/jass.20170161

山东省井水位对几次大地震同震响应的比较分析

详细信息
    通讯作者:

    刘凯: e-mail: LK8822@126.com

Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes

  • 摘要: 采用多井对多震的方式,选取山东省地下流体观测井网中同震响应较好的6口观测井作为研究对象,分别从水位变化形态和幅度对比分析2011年日本MW9.0地震、2012年苏门答腊MW8.6地震和2015年尼泊尔MW7.8地震引起的井水位变化特征,探讨引起该变化的可能机理。研究结果显示:水位同震变化形态以振荡为主;通过定量分析认为聊古一井井水位的阶升是由含水层渗透系数增大所致;位于同一断裂带上的聊古一井和鲁27井井水位在同一地震中所表现的变化形态不同,可能与两个观测井所处的地质构造条件和地震活动背景不同有关;区域应力场的变化会影响栖霞鲁07井的水位同震变化形态;水位同震变化幅度与震级、井震距存在一定关系,同时也取决于含水层水文地质条件的变化量。
    Abstract: In the form of multi-well to multi-earthquake, six wells with good coseismic responses in the underground fluid observation network of Shandong Province are selected to analyze the coseismic variations of water level caused by the Japan MW9.0 earthquake, the Sumatra MW8.6 earthquake and the Nepal MW7.8 earthquake. We analyze the characteristics in the aspects of type and amplitude, and discuss the response mechanism. The results show that the major type of coseismic variations is oscillation. With quantitative analysis, we find that the rise of Liaogu-1 water level is due to the increase of permeability coefficient of aquifer. The different types between Liaogu-1 well and Lu-27 well on the same fault zone are due to the different regional geological conditions and seismic activities. The water level coseismic variation type of Lu-07 well is affected by local tectonic stress. The amplitude of water level coseismic variation is related to the magnitude and the distance between well and epicenter, and also depends on the change of hydrogeological condition.
  • 图  1   目标地震分布图

    Figure  1.   Distribution of target earthquakes

    图  2   区域地质构造及井点分布图

    Figure  2.   Regional tectonics and monitoring wells distribution

    图  3   6口观测井的水位同震变化曲线图

    (a) 聊古一井;(b) 昌邑鲁02井;(c) 栖霞鲁07井;(d) 商河鲁09井;(e) 枣庄鲁15井;(f) 菏泽鲁27井

    Figure  3.   Coseismic variations of water level for six observation wells

    (a) Liaogu-1 well;(b) Changyilu-02 well;(c) Qixialu-07 well;(d) Shanghelu-09 well;(e) Zaozhuanglu-15 well;(f) Hezelu-27 well

    图  4   2000年至2017年9月30日聊考断裂带附近ML≥4.0地震分布图

    Figure  4.   Distribution of ML≥4.0 earthquakes near Liaocheng-Lankao fault from 2000 to September 30,2017

    图  5   栖霞鲁07井井水位同震变化曲线图

    Figure  5.   Coseismic variation of water level for Lu-07 well in Qixia city

    图  6   目标地震M-t

    Figure  6.   M-t diagram of target earthquakes

    表  1   观测井基本参数

    Table  1   Basic parameters of six wells

    井孔名称井深/m所处断裂带含水层岩性观测仪器型号采样率/(次·分钟−1
    聊古一井2 337聊考断裂带北段灰岩LN-3A1
    昌邑鲁02井1 172昌邑—大店断裂砂岩LN-3A1
    栖霞鲁07井600莱阳、栖霞、福山断裂交会处花岗岩LN-3A1
    商河鲁09井2 836济阳凹陷灰岩LN-3A1
    枣庄鲁15井501韩庄断裂北侧砂岩LN-3A1
    菏泽鲁27井2 000聊考断裂带东侧灰岩LN-3A1
    下载: 导出CSV

    表  2   水位同震变化主要参数

    Table  2   Main parameters of water level coseismic variations

    日本MW9.0地震苏门答腊MW8.6地震尼泊尔MW7.8地震
    井震距/km形态振幅/cm井震距/km形态振幅/cm井震距/km形态振幅/cm
    聊古一井2 353阶升26.54 471阶升9.33 072阶升12.1
    昌邑鲁02井2 050振荡3.44 697振荡1.13 374振荡1.0
    栖霞鲁07井1 914振荡51.74 828振荡2.93 508阶升1.1
    商河鲁09井2 220振荡48.74 612振荡9.33 200振荡2.4
    枣庄鲁15井2 275振荡7.74 415振荡1.83 176振荡0.6
    菏泽鲁27井2 445振荡48.14 337振荡21.32 990振荡9.6
    下载: 导出CSV

    表  3   聊古一井井水位M2波潮汐参数

    Table  3   Tidal parameters of M2 wave for the water level of Liaogu-1 well

    日本MW9.0地震苏门答腊MW8.6地震尼泊尔MW7.8地震
    震前震后震前震后震前震后
    潮汐因子 2.05 2.19 2.15 2.14 2.01 2.05
    相位差/° −5.20 −5.20 −6.83 −5.93 −9.67 −7.49
    注:相位差为“–”代表相位滞后.
    下载: 导出CSV

    表  4   聊城—兰考断裂带各段上下盘地层厚度分布与断层特征表

    Table  4   The strata thickness and fault characters of the Liaocheng-Lankao fault

    层底北段中段南段
    上盘厚度/m下盘厚度/m落差/m上盘厚度/m下盘厚度/m落差/m上盘厚度/m下盘厚度/m落差/m
    下第三系14×103014×1034.5×10304.5×1037×10307×103
    上第三系1 8008001 0002 0008001 2002 6001 4001 200
    第四系300200≤100300200100≥400250≥150
    上更新统605010806515806020
    注:数据来源于向宏发等(2000).
    下载: 导出CSV

    表  5   响应形态固定的观测井井水位同震变化幅度

    Table  5   Coseismic variation amplitude of water level for observation wells with constant response type

    井点名称井震距/km实际变幅/cm预测变幅/cm
    聊古一井1 3892.225.79
    昌邑鲁02井1 6820.41.14
    商河鲁09井1 5330.40.48
    枣庄鲁15井1 4430.30.19
    菏泽鲁27井1 2801.23.86
    下载: 导出CSV
  • 丁风和,戴勇,宋慧英,魏建民,查斯. 2015. 大甸子井-含水层系统水文地质参数间的变化关系[J]. 地震地质,37(4):982–990 doi: 10.3969/j.issn.0253-4967.2015.04.004

    Ding F H,Dai Y,Song H Y,Wei J M,Cha S. 2015. The changing relationship of hydrogeological parameters of Dadianzi well-aquifer system[J]. Seismology and Geology,37(4):982–990 (in Chinese)

    冯恩国,连凯旋,陈其锋,温丽媛,李月强,赵杰锋,刘保华. 2016. 聊古一井水位同震效应研究[J]. 高原地震,28(1):19–24 doi: 10.3969/j.issn.1005-586X.2016.01.004

    Feng E G,Lian K X,Chen Q F,Wen L Y,Li Y Q,Zhao J F,Liu B H. 2016. Study on the coseismic effect of the Liaogu-1 well[J]. Plateau Earthquake Research,28(1):19–24 (in Chinese)

    耿杰,陈安方,潘双进. 2008. 山东地下水动态观测井对2007年印尼8.5级地震的响应特征[J]. 西北地震学报,30(2):173–178 doi: 10.3969/j.issn.1000-0844.2008.02.016

    Geng J,Chen A F,Pan S J. 2008. Responding characteristics of dynamic underground water in observation wells of Shandong Province to Indonesia M8.5 earthquake in 2007[J]. Northwestern Seismological Journal,30(2):173–178 (in Chinese)

    黄辅琼,迟恭财,徐桂明,简春林,邓志辉. 2000. 大陆地下流体对台湾南投7.6级地震的响应研究[J]. 地震,20(增刊1):119–125

    Huang F Q,Chi G C,Xu G M,Jian C L,Deng Z H. 2000. Research on the response anomalies of subsurface fluid in mainland monitoring network to the Nantou earthquake with MS7.6[J]. Earthquake,20(S1):119–125 (in Chinese)

    兰双双,迟宝明,姜纪沂. 2011. 地下水位对近震和远震异常响应的比较—以汶川地震和苏门答腊地震为例[J]. 吉林大学学报:地球科学版,41(1):145–152

    Lan S S,Chi B M,Jiang J Y. 2011. Comparison of groundwater-level response to near earthquake and distant earthquake:Ta-king Wenchuan earthquake and Sumatra earthquake for example[J]. Journal of Jilin University:Earth Science Edition,41(1):145–152 (in Chinese)

    李俊超,康波,陈星星,王秋良. 2016. 丹江口井网流体动态与尼泊尔M8.1地震同震响应分析[J]. 大地测量与地球动力学,36(11):1025–1030

    Li J C,Kang B,Chen X X,Wang Q L. 2016. Fluid dynamic and seismic response analysis of Nepal M8.1 earthquake with the Danjiangkou well network[J]. Journal of Geodesy and Geodynamics,36(11):1025–1030 (in Chinese)

    刘成龙,王广才,张卫华,梅建昌. 2009. 三峡井网井水位对汶川8.0级地震的同震响应特征研究[J]. 地震学报,31(2):188–194 doi: 10.3321/j.issn:0253-3782.2009.02.008

    Liu C L,Wang G C,Zhang W H,Mei J C. 2009. Coseismic response of well water level in Three Gorges well-network to MS8.0 earthquake in Wenchuan[J]. Acta Seismologica Sinica,31(2):188–194 (in Chinese)

    王金维. 2013. 由井水位的固体潮效应反演含水层参数[D]. 北京: 中国地质大学(北京): 34–39.

    Wang J W. 2013. Obtaining Aquifer Parameter by Earth Tidal Effect[D]. Beijing: China University of Geosciences (Beijing): 34–39 (in Chinese).

    王学聚,殷海涛,王鹏. 2013. 山东地下流体数字化井网对汶川8.0级地震的响应分析[J]. 地震地磁观测与研究,34(1/2):225–231

    Wang X J,Yin H T,Wang P. 2013. Analysis on the responses of Shandong ground fluid digitalized well network to Wenchuan MS8.0 earthquake[J]. Seismological and Geomagnetic Observation and Research,34(1/2):225–231 (in Chinese)

    向宏发,王学潮,虢顺民,郝书俭,张辉,王基华,李今朝,李如成,李洪武. 2000. 聊城—兰考隐伏断裂第四纪活动性的综合探测研究[J]. 地震地质,22(4):351–359 doi: 10.3969/j.issn.0253-4967.2000.04.003

    Xiang H F,Wang X C,Guo S M,Hao S J,Zhang H,Wang J H,Li J Z,Li R C,Li H W. 2000. Integrated survey and investigation on the quaternary activity of the Liaocheng-Lankao buried fault[J]. Seismology and Geology,22(4):351–359 (in Chinese)

    晏锐,黄辅琼. 2009. 黄骅井水位对苏门答腊5次地震的同震响应初步研究[J]. 中国地震,25(3):325–332 doi: 10.3969/j.issn.1001-4683.2009.03.011

    Yan R,Huang F Q. 2009. Preliminary study on coseismic response of Huanghua well water level to 5 times of the Sumatra earthquakes[J]. Earthquake Research in China,25(3):325–332 (in Chinese)

    杨竹转,邓志辉,高小其,黄辅琼. 2010. 新疆乌鲁木齐04号井数字化水位同震阶变的研究[J]. 中国地震,26(3):329–339 doi: 10.3969/j.issn.1001-4683.2010.03.009

    Yang Z Z,Deng Z H,Gao X Q,Huang F Q. 2010. Study on coseismic drop steps of water level based on the digital observation from Xin-04 well,Urumqi,Xinjiang[J]. Earthquake Research in China,26(3):329–339 (in Chinese)

    杨竹转. 2011. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所: 40–45.

    Yang Z Z. 2011. Coseismic Variations of Well Water Level and Temperature Caused by Earthquake Waves and Their Generating Mechanisms[D]. Beijing: Institute of Geology, China Earthquake Administration: 40–45 (in Chinese).

    杨竹转,邓志辉,杨贤和,陶京玲. 2014. 2013年芦山MS7.0地震和2008年汶川MS8.0地震井水位同震变化的比较分析[J]. 地震地质,36(2):380–391 doi: 10.3969/j.issn.0253-4967.2014.02.009

    Yang Z Z,Deng Z H,Yang X H,Tao J L. 2014. Comparison and analysis of well water-level variations caused by Lushan MS7.0 earthquake in 2013 and Wenchuan MS8.0 earthquake in 2008[J]. Seismology and Geology,36(2):380–391 (in Chinese)

    尹宝军,马丽,陈会忠,黄建平,张晁军,王武星. 2009. 汶川8.0级地震及其强余震引起的唐山井水位同震响应特征分析[J]. 地震学报,31(2):195–204 doi: 10.3321/j.issn:0253-3782.2009.02.009

    Yin B J,Ma L,Chen H Z,Huang J P,Zhang C J,Wang W X. 2009. Characteristics of coseismic water level change in Tangshan well induced by MS8.0 wenchuan earthquake and its large aftershocks[J]. Acta Seismologica Sinica,31(2):195–204 (in Chinese)

    尹宏伟,梁丽环,韩文英,李凤,刘静. 2016. 河北省数字水位对尼泊尔MS8.1地震的同震响应特征研究[J]. 地震工程学报,38(增刊1):73–80

    Yin H W,Liang L H,Han W Y,Li F,Liu J. 2016. Co-seismic response characteristics of digital water levels in Hebei Province during the 2015 Nepal MS8.1 earthquake[J]. China Earthquake Engineering Journal,38(S1):73–80 (in Chinese)

    鱼金子,车用太,刘成龙,李万明. 2012. 金沙江水网对日本9.0级地震的同震响应及其特征与机理[J]. 地震,32(1):59–69 doi: 10.3969/j.issn.1003-1375.2012.01.012

    Yu J Z,Che Y T,Liu C L,Li W M. 2012. Coseismic responses of water level and temperature in wells of the Jinshajiang groundwater observation network to the Japan MS9.0 earthquake:Characteristics and mechanism[J]. Earthquake,32(1):59–69 (in Chinese)

    Blanchard F B,Byerly P. 1935. A study of a well gauge as a seismograph[J]. Bull Seismol Soc Am,25(4):313–321

    Cooper Jr H H,Bredehoeft J D,Papadopulos I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926 doi: 10.1029/JZ070i016p03915

    Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic wave increase permeability[J]. Nature,441(9/9):1135–1138

    Huang F Q,Jian C L,Tang Y,Xu G M,Deng Z H,Chi G C. 2004. Response changes of some wells in the mainland subsurface fluid monitoring network of China,due to the September 21,1999,MS7.6 Chi-Chi earthquake[J]. Tectonophysics,390(1/4):217–234

    Huang F Q,Chen Y,Ji P,Ren K X,Gao F W,Zhang L K. 2015. Co-seismic changes of well water level and volume strain meter in capital area and its vicinity,due to the Nov.14,2001 MS8.1 Kunlun mountain earthquake,China[J]. Geodesy and Geodynamics,6(6):460–466 doi: 10.1016/j.geog.2015.12.005

  • 期刊类型引用(0)

    其他类型引用(3)

图(6)  /  表(5)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  687
  • PDF下载量:  101
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-02-05
  • 修回日期:  2018-10-30
  • 网络出版日期:  2019-01-05
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回