Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes
-
摘要: 采用多井对多震的方式,选取山东省地下流体观测井网中同震响应较好的6口观测井作为研究对象,分别从水位变化形态和幅度对比分析2011年日本MW9.0地震、2012年苏门答腊MW8.6地震和2015年尼泊尔MW7.8地震引起的井水位变化特征,探讨引起该变化的可能机理。研究结果显示:水位同震变化形态以振荡为主;通过定量分析认为聊古一井井水位的阶升是由含水层渗透系数增大所致;位于同一断裂带上的聊古一井和鲁27井井水位在同一地震中所表现的变化形态不同,可能与两个观测井所处的地质构造条件和地震活动背景不同有关;区域应力场的变化会影响栖霞鲁07井的水位同震变化形态;水位同震变化幅度与震级、井震距存在一定关系,同时也取决于含水层水文地质条件的变化量。Abstract: In the form of multi-well to multi-earthquake, six wells with good coseismic responses in the underground fluid observation network of Shandong Province are selected to analyze the coseismic variations of water level caused by the Japan MW9.0 earthquake, the Sumatra MW8.6 earthquake and the Nepal MW7.8 earthquake. We analyze the characteristics in the aspects of type and amplitude, and discuss the response mechanism. The results show that the major type of coseismic variations is oscillation. With quantitative analysis, we find that the rise of Liaogu-1 water level is due to the increase of permeability coefficient of aquifer. The different types between Liaogu-1 well and Lu-27 well on the same fault zone are due to the different regional geological conditions and seismic activities. The water level coseismic variation type of Lu-07 well is affected by local tectonic stress. The amplitude of water level coseismic variation is related to the magnitude and the distance between well and epicenter, and also depends on the change of hydrogeological condition.
-
Keywords:
- water level /
- earthquake /
- coseismic response /
- aquifer /
- Shandong Province
-
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021年2月13日14时7分50秒(UTC),日本本州以东发生了一次矩震级高达MW7.2的地震,震中位于(37.745°N,141.749°E),震源深度为49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)随后发布了这次地震的矩心矩张量解(表1)。震后48小时内累计发生M>2.5余震13次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间。该事件所在区域曾于2011年3月11日发生过MW9.1特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域。
表 1 GCMT,USGS 和本研究所得日本本州东海岸MW7.2地震矩心矩张量解Table 1. The centroid moment tensor solutions for the MW7.2 earthquake in the east coast of Honshu,Janpan,from GCMT,USGS and this study机构 矩张量/(1019 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 矩心深度/km GCMT (2021) 5.540 −0.647 −4.890 0.269 −1.760 −1.740 9.6 37.60 141.63 50.7 USGS (2021)(W震相) 4.557 −0.220 −4.337 0.724 −0.773 −1.550 13.2 37.63 141.88 60.5 USGS (2021)(体波) 5.964 −1.531 −4.434 0.313 −2.151 −1.156 − 37.75 141.72 50.6 本文 8.588 −0.147 −8.440 −0.217 −2.755 −1.000 12.0 37.65 141.45 50.0 基于对该事件震级、噪声水平及空间分辨率的综合考虑,我们收集了震中距处于34.53°—89.92°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字地震台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN) 61个台站的宽频带垂直分量数据作为观测资料,采用AK135模型计算格林函数(Wang,1999)并截取P波数据,根据震级将滤波频带设定为0.01—0.05 Hz。与Kanamori和Rivera (2008)、Duputel等(2012b)以及先前的研究(张喆等,2020)相同,本文采用网格搜索的方法对矩心时空信息进行非线性反演,结果如图1所示。反演结果显示,矩心时间为12 s,矩心水平坐标为(37.65°N,141.45°E),矩心深度为50 km,其中双力偶成分占比接近100%。根据矩心矩张量解(表1,图2),我们也得到了相应的最佳双力偶解(表2)。图3展示了利用反演结果计算的合成波形与观测波形的比较,二者的整体相关系数达到0.93,二次误差为5.785×10−8,大多数台站的相关系数在0.90以上。
图 1 日本本州东海岸MW7.2地震矩心矩张量解反演过程(a) 矩心时间τc搜索;(b) 矩心水平空间搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc搜索;(d) 矩心相对震中的位置,红色沙滩球表示矩心矩张量解,红色星形表示震中Figure 1. Inversion process of the centroid moment tensor solution for the MW7.2 earthquake in the east coast of Honshu,Japan(a) Search for centroid time τc;(b) Search for the horizontal location of the centroid (yellow circle);(c) Search for centroid depth hc; (d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)表 2 GCMT,USGS以及本研究得到的日本本州东海岸MW7.2地震的最佳双力偶解Table 2. The best double-couple solutions for the MW7.2 earthquake in the east coast of Honshu,Japan,from USGS,GCMT and this study机构 标量地震矩
/(1019 N·m)双力偶
成分占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2021) 5.800 99% 192 53 80 28 38 103 USGS (2021)(W震相) 4.831 96% 187 49 74 30 43 107 USGS (2021)(体波) 5.903 61% 191 55 82 25 35 102 本文 9.008 100% 186 54 89 7 36 91 与USGS和GCMT的结果(图4)相比,本文反演所得矩心时间12 s介于二者之间,而矩心位置(37.65°N,141.45°E,深度50 km)要更偏向西侧。本文反演得到的标量地震矩达到9.008×1019 N·m,换算为矩震级约MW7.24,高于其它机构(约MW7.1)的结果。此外,本文反演得到矩张量解中双力偶成分占比接近100%,这个数值要略高于GCMT和USGS (W震相)的结果,明显高于USGS (体波)发布的结果。从最佳双力偶解所确定的断层面来看,本研究的走向和倾角与其它研究结果近似,滑动角上存在接近10°的差异。经反复测试我们认为滑动角、矩心位置与其它研究结果的差异与观测资料、滤波频带的不同以及参考震中(Preliminary Determination Epicenter,缩写为PDE)的变更相关。从本文反演得到的震源机制解来看这是一次纯逆冲事件。
图 4 2011年MW9.1地震(灰色沙滩球)后M>2.5事件以及本州东海岸MW7.2地震的余震分布和各机构发布的该主震的矩心矩张量反演结果Figure 4. The centroid moment tensor solutions (colored beach-balls) from various institutions and aftershocks of the MW7.2 earthquake in east coast of Honshu as well as the M>2.5 earthquakes since the 2011 MW9.1 earthquake (gray beach-ball)本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自于全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!
-
表 1 观测井基本参数
Table 1 Basic parameters of six wells
井孔名称 井深/m 所处断裂带 含水层岩性 观测仪器型号 采样率/(次·分钟−1) 聊古一井 2 337 聊考断裂带北段 灰岩 LN-3A 1 昌邑鲁02井 1 172 昌邑—大店断裂 砂岩 LN-3A 1 栖霞鲁07井 600 莱阳、栖霞、福山断裂交会处 花岗岩 LN-3A 1 商河鲁09井 2 836 济阳凹陷 灰岩 LN-3A 1 枣庄鲁15井 501 韩庄断裂北侧 砂岩 LN-3A 1 菏泽鲁27井 2 000 聊考断裂带东侧 灰岩 LN-3A 1 表 2 水位同震变化主要参数
Table 2 Main parameters of water level coseismic variations
日本MW9.0地震 苏门答腊MW8.6地震 尼泊尔MW7.8地震 井震距/km 形态 振幅/cm 井震距/km 形态 振幅/cm 井震距/km 形态 振幅/cm 聊古一井 2 353 阶升 26.5 4 471 阶升 9.3 3 072 阶升 12.1 昌邑鲁02井 2 050 振荡 3.4 4 697 振荡 1.1 3 374 振荡 1.0 栖霞鲁07井 1 914 振荡 51.7 4 828 振荡 2.9 3 508 阶升 1.1 商河鲁09井 2 220 振荡 48.7 4 612 振荡 9.3 3 200 振荡 2.4 枣庄鲁15井 2 275 振荡 7.7 4 415 振荡 1.8 3 176 振荡 0.6 菏泽鲁27井 2 445 振荡 48.1 4 337 振荡 21.3 2 990 振荡 9.6 表 3 聊古一井井水位M2波潮汐参数
Table 3 Tidal parameters of M2 wave for the water level of Liaogu-1 well
日本MW9.0地震 苏门答腊MW8.6地震 尼泊尔MW7.8地震 震前 震后 震前 震后 震前 震后 潮汐因子 2.05 2.19 2.15 2.14 2.01 2.05 相位差/° −5.20 −5.20 −6.83 −5.93 −9.67 −7.49 注:相位差为“–”代表相位滞后. 表 4 聊城—兰考断裂带各段上下盘地层厚度分布与断层特征表
Table 4 The strata thickness and fault characters of the Liaocheng-Lankao fault
层底 北段 中段 南段 上盘厚度/m 下盘厚度/m 落差/m 上盘厚度/m 下盘厚度/m 落差/m 上盘厚度/m 下盘厚度/m 落差/m 下第三系 14×103 0 14×103 4.5×103 0 4.5×103 7×103 0 7×103 上第三系 1 800 800 1 000 2 000 800 1 200 2 600 1 400 1 200 第四系 300 200 ≤100 300 200 100 ≥400 250 ≥150 上更新统 60 50 10 80 65 15 80 60 20 注:数据来源于向宏发等(2000). 表 5 响应形态固定的观测井井水位同震变化幅度
Table 5 Coseismic variation amplitude of water level for observation wells with constant response type
井点名称 井震距/km 实际变幅/cm 预测变幅/cm 聊古一井 1 389 2.2 25.79 昌邑鲁02井 1 682 0.4 1.14 商河鲁09井 1 533 0.4 0.48 枣庄鲁15井 1 443 0.3 0.19 菏泽鲁27井 1 280 1.2 3.86 -
丁风和,戴勇,宋慧英,魏建民,查斯. 2015. 大甸子井-含水层系统水文地质参数间的变化关系[J]. 地震地质,37(4):982–990 doi: 10.3969/j.issn.0253-4967.2015.04.004 Ding F H,Dai Y,Song H Y,Wei J M,Cha S. 2015. The changing relationship of hydrogeological parameters of Dadianzi well-aquifer system[J]. Seismology and Geology,37(4):982–990 (in Chinese)
冯恩国,连凯旋,陈其锋,温丽媛,李月强,赵杰锋,刘保华. 2016. 聊古一井水位同震效应研究[J]. 高原地震,28(1):19–24 doi: 10.3969/j.issn.1005-586X.2016.01.004 Feng E G,Lian K X,Chen Q F,Wen L Y,Li Y Q,Zhao J F,Liu B H. 2016. Study on the coseismic effect of the Liaogu-1 well[J]. Plateau Earthquake Research,28(1):19–24 (in Chinese)
耿杰,陈安方,潘双进. 2008. 山东地下水动态观测井对2007年印尼8.5级地震的响应特征[J]. 西北地震学报,30(2):173–178 doi: 10.3969/j.issn.1000-0844.2008.02.016 Geng J,Chen A F,Pan S J. 2008. Responding characteristics of dynamic underground water in observation wells of Shandong Province to Indonesia M8.5 earthquake in 2007[J]. Northwestern Seismological Journal,30(2):173–178 (in Chinese)
黄辅琼,迟恭财,徐桂明,简春林,邓志辉. 2000. 大陆地下流体对台湾南投7.6级地震的响应研究[J]. 地震,20(增刊1):119–125 Huang F Q,Chi G C,Xu G M,Jian C L,Deng Z H. 2000. Research on the response anomalies of subsurface fluid in mainland monitoring network to the Nantou earthquake with MS7.6[J]. Earthquake,20(S1):119–125 (in Chinese)
兰双双,迟宝明,姜纪沂. 2011. 地下水位对近震和远震异常响应的比较—以汶川地震和苏门答腊地震为例[J]. 吉林大学学报:地球科学版,41(1):145–152 Lan S S,Chi B M,Jiang J Y. 2011. Comparison of groundwater-level response to near earthquake and distant earthquake:Ta-king Wenchuan earthquake and Sumatra earthquake for example[J]. Journal of Jilin University:Earth Science Edition,41(1):145–152 (in Chinese)
李俊超,康波,陈星星,王秋良. 2016. 丹江口井网流体动态与尼泊尔M8.1地震同震响应分析[J]. 大地测量与地球动力学,36(11):1025–1030 Li J C,Kang B,Chen X X,Wang Q L. 2016. Fluid dynamic and seismic response analysis of Nepal M8.1 earthquake with the Danjiangkou well network[J]. Journal of Geodesy and Geodynamics,36(11):1025–1030 (in Chinese)
刘成龙,王广才,张卫华,梅建昌. 2009. 三峡井网井水位对汶川8.0级地震的同震响应特征研究[J]. 地震学报,31(2):188–194 doi: 10.3321/j.issn:0253-3782.2009.02.008 Liu C L,Wang G C,Zhang W H,Mei J C. 2009. Coseismic response of well water level in Three Gorges well-network to MS8.0 earthquake in Wenchuan[J]. Acta Seismologica Sinica,31(2):188–194 (in Chinese)
王金维. 2013. 由井水位的固体潮效应反演含水层参数[D]. 北京: 中国地质大学(北京): 34–39. Wang J W. 2013. Obtaining Aquifer Parameter by Earth Tidal Effect[D]. Beijing: China University of Geosciences (Beijing): 34–39 (in Chinese).
王学聚,殷海涛,王鹏. 2013. 山东地下流体数字化井网对汶川8.0级地震的响应分析[J]. 地震地磁观测与研究,34(1/2):225–231 Wang X J,Yin H T,Wang P. 2013. Analysis on the responses of Shandong ground fluid digitalized well network to Wenchuan MS8.0 earthquake[J]. Seismological and Geomagnetic Observation and Research,34(1/2):225–231 (in Chinese)
向宏发,王学潮,虢顺民,郝书俭,张辉,王基华,李今朝,李如成,李洪武. 2000. 聊城—兰考隐伏断裂第四纪活动性的综合探测研究[J]. 地震地质,22(4):351–359 doi: 10.3969/j.issn.0253-4967.2000.04.003 Xiang H F,Wang X C,Guo S M,Hao S J,Zhang H,Wang J H,Li J Z,Li R C,Li H W. 2000. Integrated survey and investigation on the quaternary activity of the Liaocheng-Lankao buried fault[J]. Seismology and Geology,22(4):351–359 (in Chinese)
晏锐,黄辅琼. 2009. 黄骅井水位对苏门答腊5次地震的同震响应初步研究[J]. 中国地震,25(3):325–332 doi: 10.3969/j.issn.1001-4683.2009.03.011 Yan R,Huang F Q. 2009. Preliminary study on coseismic response of Huanghua well water level to 5 times of the Sumatra earthquakes[J]. Earthquake Research in China,25(3):325–332 (in Chinese)
杨竹转,邓志辉,高小其,黄辅琼. 2010. 新疆乌鲁木齐04号井数字化水位同震阶变的研究[J]. 中国地震,26(3):329–339 doi: 10.3969/j.issn.1001-4683.2010.03.009 Yang Z Z,Deng Z H,Gao X Q,Huang F Q. 2010. Study on coseismic drop steps of water level based on the digital observation from Xin-04 well,Urumqi,Xinjiang[J]. Earthquake Research in China,26(3):329–339 (in Chinese)
杨竹转. 2011. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所: 40–45. Yang Z Z. 2011. Coseismic Variations of Well Water Level and Temperature Caused by Earthquake Waves and Their Generating Mechanisms[D]. Beijing: Institute of Geology, China Earthquake Administration: 40–45 (in Chinese).
杨竹转,邓志辉,杨贤和,陶京玲. 2014. 2013年芦山MS7.0地震和2008年汶川MS8.0地震井水位同震变化的比较分析[J]. 地震地质,36(2):380–391 doi: 10.3969/j.issn.0253-4967.2014.02.009 Yang Z Z,Deng Z H,Yang X H,Tao J L. 2014. Comparison and analysis of well water-level variations caused by Lushan MS7.0 earthquake in 2013 and Wenchuan MS8.0 earthquake in 2008[J]. Seismology and Geology,36(2):380–391 (in Chinese)
尹宝军,马丽,陈会忠,黄建平,张晁军,王武星. 2009. 汶川8.0级地震及其强余震引起的唐山井水位同震响应特征分析[J]. 地震学报,31(2):195–204 doi: 10.3321/j.issn:0253-3782.2009.02.009 Yin B J,Ma L,Chen H Z,Huang J P,Zhang C J,Wang W X. 2009. Characteristics of coseismic water level change in Tangshan well induced by MS8.0 wenchuan earthquake and its large aftershocks[J]. Acta Seismologica Sinica,31(2):195–204 (in Chinese)
尹宏伟,梁丽环,韩文英,李凤,刘静. 2016. 河北省数字水位对尼泊尔MS8.1地震的同震响应特征研究[J]. 地震工程学报,38(增刊1):73–80 Yin H W,Liang L H,Han W Y,Li F,Liu J. 2016. Co-seismic response characteristics of digital water levels in Hebei Province during the 2015 Nepal MS8.1 earthquake[J]. China Earthquake Engineering Journal,38(S1):73–80 (in Chinese)
鱼金子,车用太,刘成龙,李万明. 2012. 金沙江水网对日本9.0级地震的同震响应及其特征与机理[J]. 地震,32(1):59–69 doi: 10.3969/j.issn.1003-1375.2012.01.012 Yu J Z,Che Y T,Liu C L,Li W M. 2012. Coseismic responses of water level and temperature in wells of the Jinshajiang groundwater observation network to the Japan MS9.0 earthquake:Characteristics and mechanism[J]. Earthquake,32(1):59–69 (in Chinese)
Blanchard F B,Byerly P. 1935. A study of a well gauge as a seismograph[J]. Bull Seismol Soc Am,25(4):313–321
Cooper Jr H H,Bredehoeft J D,Papadopulos I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926 doi: 10.1029/JZ070i016p03915
Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic wave increase permeability[J]. Nature,441(9/9):1135–1138
Huang F Q,Jian C L,Tang Y,Xu G M,Deng Z H,Chi G C. 2004. Response changes of some wells in the mainland subsurface fluid monitoring network of China,due to the September 21,1999,MS7.6 Chi-Chi earthquake[J]. Tectonophysics,390(1/4):217–234
Huang F Q,Chen Y,Ji P,Ren K X,Gao F W,Zhang L K. 2015. Co-seismic changes of well water level and volume strain meter in capital area and its vicinity,due to the Nov.14,2001 MS8.1 Kunlun mountain earthquake,China[J]. Geodesy and Geodynamics,6(6):460–466 doi: 10.1016/j.geog.2015.12.005
-
期刊类型引用(4)
1. 陈长龙,刘启方. 三种非线性时变识别方法的对比研究——以2021年日本福岛地震为例. 地震工程学报. 2023(02): 372-381 . 百度学术
2. 吴双兰,野津厚,長坂陽介. 2021年日本福岛县冲地震的震源破裂过程分析——基于采用经验格林函数方法的波形反演. 世界地震工程. 2021(02): 1-12 . 百度学术
3. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 . 百度学术
4. 张喆,许力生. 2021年青海玛多M_W7.5地震矩心矩张量解. 地震学报. 2021(03): 387-391 . 本站查看
其他类型引用(1)