龙门山断裂带及附近区域地貌形成与地应力演化机制研究

师皓宇, 马念杰

师皓宇, 马念杰. 2018: 龙门山断裂带及附近区域地貌形成与地应力演化机制研究. 地震学报, 40(3): 332-340. DOI: 10.11939/jass.20170173
引用本文: 师皓宇, 马念杰. 2018: 龙门山断裂带及附近区域地貌形成与地应力演化机制研究. 地震学报, 40(3): 332-340. DOI: 10.11939/jass.20170173
Shi Haoyu, Ma Nianjie. 2018: Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions. Acta Seismologica Sinica, 40(3): 332-340. DOI: 10.11939/jass.20170173
Citation: Shi Haoyu, Ma Nianjie. 2018: Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions. Acta Seismologica Sinica, 40(3): 332-340. DOI: 10.11939/jass.20170173

龙门山断裂带及附近区域地貌形成与地应力演化机制研究

详细信息
    通讯作者:

    师皓宇: e-mail: shihaoyu2000@163.com

Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions

  • 摘要: 以龙门山附近区域水平运动特性以及深部岩体力学特性为基本条件,采用FLAC模拟软件计算分析了龙门山断裂带及附近区域的地貌形成过程和地应力演化机制。研究结果认为:区域板块运动是龙门山地貌形成的重要原因,龙门山3条断层在62万年内的相对滑移速率分别为1.53,0.245和0.458 mm/a,与实际监测结果基本吻合;龙门山断裂带左侧呈抬升趋势,右侧四川盆地的垂向运动保持稳定;随着区域板块的运动,3条断裂带附近主应力的变化均经历了3个阶段,即应力低态稳定阶段,应力增高阶段和应力高态稳定阶段,最终形成应力积聚—应力释放的平衡局面;断裂带附近的最大、最小主应力比值介于2.94—3.71之间,平均为3.3,与实际监测结果基本吻合。由此可以推断,龙门山及附近区域将长期处于高偏应力环境,即长期处于“应力累积—进入临界状态—发震—新的应力累积”的地震周期。
    Abstract: Took Longmenshan regional kinematic characteristics and mechanical characteris-tics of deep rock mass as basic condition, we used FLAC simulation software to analyze geomorphic process of Longmenshan fault and the crustal stress evolution mechanism of its adjacent area. The results show that regional plate motion was the important reason of the Longmen- shan landforms formation, and the relative slip velocities of three faults in Longmenshan are 1.53, 0.245 and 0.458 mm/a respectively, which basically coincide with the actual monitoring results. The left region of Longmenshan fault zone is uplifted, while the right region that is the Sichuan basin remains stable. With the regional plate motion, there are three stages in the development of principal stress near the fault zone, which are the low-state stability stage, the increase stage and the high-state stability stage, and balance of stress accumulation-stress release is finally formed. The ratio of maximum and minimum principal stress near the fault zone is in a range of 2.94—3.71, and the average value is 3.3, basically coincide with the actual monitoring results. The following conjecture can be obtained that Longmenshan fault and its vicinity area will be in a high deviatoric stress environment for a long time, and will under the seismic period of " stress accumulation-entering the critical state-earthquake generation-new stress accumulation” for a long time.
  • 图  1   龙门山断裂带活动断裂空间分布图(引自付碧宏等,2008

    Figure  1.   Active faults distribution in Longmenshan fault zone (after Fu et al,2008)

    图  2   龙门山附近区域地形地貌剖面图(引自颜照坤等,2014

    Figure  2.   Topographic profile of Longmenshan adjacent regions (after Yan et al,2014)

    图  3   龙门山断裂带数值计算模型图。圆点及数字表示主应力追踪测点及编号

    Figure  3.   Numerical model of Longmenshan fault zone. Dots and figures represent principal stress tracking points and numbers

    图  4   垂直位移云图

    Figure  4.   Nephogram of vertical displacement

    图  5   断层面相对滑移曲线

    Figure  5.   Relative slip curve of fault plane

    图  6   14 km (a—c)和21 km (d—f)深处断层附近的主应力变化曲线

    Figure  6.   Variation curves of principal stress near fault at 14 km (a−c) and 21 km (d−f) depth

    表  1   主应力追踪测点的坐标

    Table  1   Coordinate of principal stress tracking points

    测点编号 水平位置/km 深度/km 测点编号 水平位置/km 深度/km
    1 86.10 0.7 10 113.25 14
    2 86.50 0.7 11 129.44 14
    3 117.70 0.7 12 133.77 14
    4 120.40 0.7 13 67.66 21
    5 137.12 0.7 14 74.03 21
    6 138.72 0.7 15 100.10 21
    7 74.83 14 16 106.00 21
    8 81.00 14 17 121.40 21
    9 106.80 14 18 127.80 21
    注:水平位置即测点距模型左边界的距离。
    下载: 导出CSV

    表  2   模型岩体物理力学参数

    Table  2   Physico-mechanical parameters for rock mass of the numerical model

    弹性模量/GPa 抗拉强
    度/MPa
    内聚
    力/MPa
    摩擦
    角/°
    泊松比 密度/(103 kg·m−3 重力加速
    度/(m·s−2
    断层面
    地表 底部 地表 底部 法向刚度/GPa 切向刚度/GPa 摩擦角/°
    40 106 12 16 35 0.286 2.575 2.809 9.8 1 0.5 10
    下载: 导出CSV

    表  3   模型测点的主应力值

    Table  3   Principal stress values of model tracking points

    测点 σmin/MPa σmax/MPa σmax/σmin 测点 σmin/MPa σmax/MPa σmax/σmin
    7 188 696 3.71 13 249 886 3.56
    8 248 728 2.94 14 327 992 3.03
    9 179 625 3.49 15 276 916 3.31
    10 199 633 3.19 16 282 887 3.14
    11 165 594 3.59 17 263 851 3.24
    12 187 618 3.31 18 286 902 3.15
    下载: 导出CSV

    表  4   龙门山断裂带地应力测量值

    Table  4   Measurement values of crustal stress for Longmenshan fault zone

    钻孔名称 深度/m σmax/MPa σmin/MPa σmax/σmin
    江油-1 178 11.26 4.73 2.38
    江油-2 195 6.55 5.17 1.27
    江油-3 193 15.91 5.11 3.11
    平武-1 439 37.55 11.63 3.23
    盘龙-1 323 33.12 8.56 3.87
    康定-1 185 16.61 4.91 3.38
    注:数据参考陈群策等 (2012)秦向辉等 (2013)
    下载: 导出CSV
  • 蔡美峰, 王双红. 1997. 地应力状态与围岩性质的关系研究[J]. 中国矿业, 6(6): 38-41.

    Cai M F, Wang S H. 1997. Relation between ground stress behaviour and properties of surrounding rock[J]. China Mining Magazine, 6(6): 38-41 (in Chinese).

    陈国光, 计凤桔, 周荣军, 徐杰, 周本刚, 黎小刚, 叶友青. 2007. 龙门山断裂带晚第四纪活动性分段的初步研究[J]. 地震地质, 29(3): 657-673.

    Chen G G, Ji F J, Zhou R J, Xu J, Zhou B G, Li X G, Ye Y Q. 2007. Primary research of activity segmentation of Longmenshan fault zone since late-Quaternary[J]. Seismology and Geology, 29(3): 657-673 (in Chinese).

    陈群策, 丰成君, 孟文, 秦向辉, 安其美. 2012. 5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 55(12): 3923-3932.

    Chen Q C, Feng C J, Meng W, Qin X H, An Q M. 2012. Analysis of in-situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5·12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(12): 3923-3932 (in Chinese).

    邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质, 16(4): 389-403.

    Deng Q D, Chen S F, Zhao X L. 1994. Tectonics, scismisity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology, 16(4): 389-403 (in Chinese).

    付碧宏, 时丕龙, 张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报, 82(12): 1679-1687.

    Fu B H, Shi P L, Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS 8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica, 82(12): 1679-1687 (in Chinese).

    江在森, 方颖, 武艳强, 王敏, 杜方, 平建军. 2009. 汶川8.0级地震前区域地壳运动与变形动态过程[J]. 地球物理学报, 52(2): 505-518.

    Jiang Z S, Fang Y, Wu Y Q, Wang M, Du F, Ping J J. 2009. The dynamic process of regional crustal movement and deformation before Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2): 505-518 (in Chinese).

    赖锡安, 黄立文, 徐菊生. 2004. 中国大陆现今地壳运动[M]. 北京: 地震出版社: 199–201.

    Lai X A, Huang L W, Xu J S. 2004. Present-Day Crustal Movement in China Constrained[M]. Beijing: Seismological Press: 199–201 (in Chinese).

    李勇, 周荣军, Densmore A L, Ellis M A, 李永昭. 2006. 青藏高原东缘大陆动力学过程与地质响应[M]. 北京: 地质出版社: 98–123.

    Li Y, Zhou R J, Densmore A L, Ellis M A, Li Y Z. 2006. The Dynamic Process and Geological Response of the Eastern Margin of Tibet Plateau[M]. Beijing: Geological Publishing House: 98–123 (in Chinese).

    柳畅, 石耀霖, 朱伯靖, 程惠红, 杨小林.2014.地壳流变结构控制作用下的龙门山断裂带地震发生机理.地球物理学报, 57(2): 404-418.

    Liu C, Shi Y L, Zhu B J, Cheng H H, Yang X L. 2014. Crustal rheology control on the mechanism of the earthquake generation at the Longmen shan fault. Chinese Journal of Geophysics, 57(2): 404-418 (in Chinese).

    刘晓霞, 武艳强, 江在森, 占伟, 李强, 魏文薪, 邹镇宇. 2015. GPS观测揭示的芦山MS7.0地震前龙门山断裂带南段变形演化特征[J]. 中国科学: 地球科学, 45(8): 1198-1207.

    Liu X X, Wu Y Q, Jiang Z S, Zhan W, Li Q, Wei W X, Zou Z Y. 2015. Preseismic deformation in the seismogenic zone of the Lushan MS7.0 earthquake detected by GPS observations[J]. Science China Earth Sciences, 58(9): 1592-1601.

    秦向辉, 谭成轩, 孙进忠, 陈群策, 安美建. 2012. 地应力与岩石弹性模量关系试验研究[J]. 岩土力学, 33(6): 1689-1695.

    Qin X H, Tan C X, Sun J Z, Chen Q C, An M J. 2012. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 33(6): 1689-1695 (in Chinese).

    秦向辉, 陈群策, 谭成轩, 安其美, 吴满路, 丰成君. 2013. 龙门山断裂带西南段现今地应力状态与地震危险性分析[J]. 岩石力学与工程学报, 32(增刊1): 2870-2876.

    Qin X H, Chen Q C, Tan C X, An Q M, Wu M L, Feng C J. 2013. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S1): 2870-2876 (in Chinese).

    沈明荣, 陈建峰. 2006. 岩体力学[M]. 上海: 同济大学出版社: 52–54.

    Shen M R, Chen J F. 2006. Rock Mass Mechanics[M]. Shanghai: Tongji University Press: 52–54 (in Chinese).

    苏生瑞, 黄润秋, 王士天. 2002. 断裂构造对地应力场的影响及其工程应用[M]. 北京: 科学出版社: 1–8.

    Su S R, Huang R Q, Wang S T. 2002. The Influence of Fracture Structure on Geostress Field and Its Engineering Application[M]. Beijing: Science Press: 1–8 (in Chinese).

    孙振添, 魏东平, 韩鹏, 刘鎏. 2013. 板块运动与地震各向异性及应力场的相关性统计分析[J]. 地震学报, 35(6): 785-798.

    Sun Z T, Wei D P, Han P, Liu L. 2013. Statistical analysis on the correlation between plate motion and seismic anisotropy as well as stress field[J]. Acta Seismologica Sinica, 35(6): 785-798 (in Chinese).

    万天丰. 1993. 中国东部中-新生代板内变形构造应力场及其应用[M]. 北京: 地质出版社: 101–104.

    Wan T F. 1993. The Tectonic Stress Field and Its Application of Intraplate Deformation in the Meso-Cenozoic in Eastern China[M]. Beijing: Geological Publishing House: 101–104 (in Chinese).

    万天丰, 任之鹤. 1999. 中国中、新生代板内变形速度研究[J]. 现代地质, 13(1): 83-92.

    Wan T F, Ren Z H. 1999. Research on the intraplate deformation velocity of China in Meso-Cenozoic[J]. Geoscience: Journal of Graduate School, China University of Geosciences, 13(1): 83-92 (in Chinese).

    王连捷, 崔军文, 周春景, 孙东生, 王薇, 唐哲民, 钱华山. 2009. 汶川5.12地震发震机理的数值模拟[J]. 地质力学学报, 15(2): 105-113.

    Wang L J, Cui J W, Zhou C J, Sun D S, Wang W, Tang Z M, Qian H S. 2009. Numerical modeling for Wenchuan earthquake mechanism[J]. Journal of Geomechanics, 15(2): 105-113 (in Chinese).

    王涛, 韩煊, 赵先宇, 朱永生. 2015. FlAC3D数值模拟方法及工程应用: 深入剖析FLAC3D5.0[M]. 北京: 中国建筑工业出版社: 168–177.

    Wang T, Han X, Zhao X Y, Zhu Y S. 2015. FlAC3D Numerical Simulation Method and Engineering Application: In-depth Analysis FLAC3D5.0[M]. Beijing: China Architecture & Building Press: 168–177 (in Chinese).

    吴建平, 黄媛, 张天中, 明跃红, 房立华. 2009. 汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报, 52(2): 320-328.

    Wu J P, Huang Y, Zhang T Z, Ming Y H, Fang L H. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics, 52(2): 320-328 (in Chinese).

    谢富仁, 崔效锋, 赵建涛. 2003. 全球应力场与构造分析[J]. 地学前缘, 10(增刊1): 22-30.

    Xie F R, Cui X F, Zhao J T. 2003. Analysis of global tectonic stress field[J]. Earth Science Frontiers, 10(S1): 22-30 (in Chinese).

    熊魂, 付小敏, 王从颜, 宾婷婷, 沈忠, 黄兴建. 2015. 砂岩在不同围压条件下变形特征的试验研究[J]. 中国测试, 41(3): 113-116, 120.

    Xiong H, Fu X M, Wang C Y, Bin T T, Shen Z, Huang X J. 2015. Experimental study of sandstone under different confining pressure deformation characteristics[J]. China Measurement & Test, 41(3): 113-116, 120 (in Chinese)

    徐锡伟, 张培震, 闻学泽, 秦尊丽, 陈桂华, 朱艾斓. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 27(3): 446-461.

    Xu X W, Zhang P Z, Wen X Z, Qin Z L, Chen G H, Zhu A L. 2005. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology, 27(3): 446-461 (in Chinese).

    徐锡伟, 闻学泽, 陈桂华, 于贵华. 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学D辑: 地球科学, 38(5): 529-542.

    Xu X W, Wen X Z, Chen G H, Yu G H. 2008. Discovery of the Longriba fault zone in eastern Bayan Har block, China and its tectonic implication[J]. Science in China Series D: Earth Sciences, 51(9): 1209-1223.

    徐芝纶. 1980. 弹性力学简明教程[M]. 北京: 高等教育出版社: 93–95.

    Xu Z L. 1980. Briefer Course of Elastic Mechanics Theory[M]. Beijing: Higher Education Press: 93–95 (in Chinese).

    颜照坤, 李勇, 赵国华, 周荣军, 李敬波, 张威, 郑立龙, 李奋生, 闫亮. 2014. 从龙门山地质地貌分段性探讨芦山地震与汶川地震的关系[J]. 自然杂志, 36(1): 51-58.

    Yan Z K, Li Y, Zhao G H, Zhou R J, Li J B, Zhang W, Zheng L L, Li F S, Yan L. 2014. The relationship between Lushan earthquake and Wenchuan earthquake by segmentation of geology and geomorphology of Longmen shan[J]. Chinese Journal of Nature, 36(1): 51-58 (in Chinese).

    杨铭键, 余贤斌, 黎剑华. 2012. 基于ANSYS与FLAC的边坡稳定性对比分析[J]. 科学技术与工程, 12(24): 6241-6244, 6251.

    Yang M J, Yu X B, Li J H. 2012. Comparative analysis for slope stability by ANSYS and FLAC[J]. Science Technology and Engineering, 12(24): 6241-6244, 6251 (in Chinese).

    叶正仁, 王建. 2004. 中国大陆现今地壳运动的动力学机制[J]. 地球物理学报, 47(3): 456-461.

    Ye Z R, Wang J. 2004. Dynamics of present-day crustal movement in the China mainland[J]. Chinese Journal of Geophysics, 47(3): 456-461 (in Chinese).

    曾融生, 丁志峰, 吴庆举. 1994. 青藏高原岩石圈构造及动力学过程研究[J]. 地球物理学报, 37(增刊2): 99-116.

    Zeng R S, Ding Z F, Wu Q J. 1994. A review on the lithospheric structures in Tibetan Plateau and constraints for dynamics[J]. Chinese Journal of Geophysics, 37(S2): 99-116 (in Chinese).

    张培震, 徐锡伟, 闻学泽, 冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073.

    Zhang P Z, Xu X W, Wen X Z, Ran Y K. 2008. Slip rates and recurrence intervals of the Longmen shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese).

    朱守彪, 张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究[J]. 地球物理学报, 52(2): 418-427.

    Zhu S B, Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan Ms8.0 earthquake, 2008[J]. Chinese Journal of Geophysics, 52(2): 418-427 (in Chinese).

    Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: An explanation of the 1/f noise[J]. Phys Rev Lett, 59(4): 381-384.

    Burchfiel B C, Chen Z L, Liu Y P, Royden L H. 1995. Tectonics of the Longmen shan and adjacent regions, central China[J]. Int Geol Rev, 37(8): 661-735.

    Coblentz D D, Richardson R M. 1996. Analysis of the South American intraplate stress field[J]. J Geophys Res, 101(B4): 8643-8657.

    Reid H F. 1910. The mechanics of the earthquake[G]// The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission, Vol.2. Washington, D.C.: Carnegie Institution of Washington: 192.

    Richardson R M. 1992. Ridge forces, absolute plate motions, and the intraplate stress field[J]. J Geophys Res, 97(B8): 11739-11748.

    Royden L H, Burchfiel B C, King R W, Wang E, Chen Z L, Shen F, Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788-790.

    Sugisaki R. 1976. Chemical characteristics of volcanic rocks: Relation to plate movements[J]. Lithos, 9(1): 17-30.

  • 期刊类型引用(2)

    1. Long LI,Xin WANG,Guangbing HOU,Yuan LING,Yinshuang AI. Two thin middle-crust low-velocity zones imaged in the Chuan-Dian region of southeastern Tibetan Plateau and their tectonic implications. Science China Earth Sciences. 2024(05): 1675-1686 . 必应学术
    2. 李龙,王新,侯广兵,凌媛,艾印双. 青藏高原东南缘川滇地区中地壳两条薄状低速层及其构造意义. 中国科学:地球科学. 2024(05): 1702-1713 . 百度学术

    其他类型引用(0)

图(6)  /  表(4)
计量
  • 文章访问数:  2177
  • HTML全文浏览量:  1460
  • PDF下载量:  131
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-09-10
  • 修回日期:  2018-03-08
  • 网络出版日期:  2018-03-28
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回