伪二维弹性波联合反演近地表的速度和衰减

王月, 张捷

王月, 张捷. 2018: 伪二维弹性波联合反演近地表的速度和衰减. 地震学报, 40(5): 595-608. DOI: 10.11939/jass.20170196
引用本文: 王月, 张捷. 2018: 伪二维弹性波联合反演近地表的速度和衰减. 地震学报, 40(5): 595-608. DOI: 10.11939/jass.20170196
Wang Yue, Zhang Jie. 2018: Pseudo 2D joint elastic waveform inversion for velocities and attenuation in the near surface. Acta Seismologica Sinica, 40(5): 595-608. DOI: 10.11939/jass.20170196
Citation: Wang Yue, Zhang Jie. 2018: Pseudo 2D joint elastic waveform inversion for velocities and attenuation in the near surface. Acta Seismologica Sinica, 40(5): 595-608. DOI: 10.11939/jass.20170196

伪二维弹性波联合反演近地表的速度和衰减

基金项目: 国家自然科学基金(41374132)和中石油东方地球物理勘探有限责任公司横向项目(BGP201206780)联合资助
详细信息
    通讯作者:

    王月: e-mail: wangyue@seis.ac.cn

  • 中图分类号: P315.3

Pseudo 2D joint elastic waveform inversion for velocities and attenuation in the near surface

  • 摘要: 利用弹性波的初至波和面波,应用交叉梯度算子,联合反演了近地表的二维纵横波速度和衰减参数,并提出了采用一维弹性波正演模拟,应用二维Tikhonov正则化,同时反演出二维速度模型和衰减模型的方法。理论模型测试和实际数据应用结果均表明本文算法极大地提高了计算效率,同时能够反演出可靠的速度模型和衰减模型。
    Abstract: In this study, by applying cross-gradient constraints, we joint early arrivals and surface waves to invert the 2D P-wave velocity, S-wave velocity, QP and QS simultaneously for the near-surface area. In order to improve the efficiency of computation, we propose a method that employs 1D elastic forward modeling and applies 2D Tikhonov regularization to invert the 2D velocity structures and attenuation model. Synthetic tests and real data application illustrate that the method can greatly improve the computational efficiency, and is able to invert reliable velocity and attenuation models simultaneously.
  • 图  2   弹性波对参数vP/vP0 (a),vS/vS0 (b),QP/QP0 (c) 和QS/QS0 (d)的敏感度

    Figure  2.   Sensitivity of elastic waveform to parameters vP/vP0 (a),vS/vS0 (b),QP/QP0 (c) and QS/QS0 (d)

    图  1   真实理论测试模型

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  1.   True models for synthetic tests

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  3   联合反演的初始输入模型

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  3.   Initial models for joint inversion

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  4   不同交叉梯度权重下初至波(a)和面波(b)的波形不匹配度随迭代次数的变化

    Figure  4.   Misfit variation of initial arrival data (a) and surface wave data (b) with iteration number by different cross-gradient weightings

    图  5   交叉梯度权重αt= 0时理论数据的联合反演结果

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  5.   The synthetic data inversion results with cross-gradient weighting αt= 0

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  7   理论模型测试的初至波和面波的真实数据(黑线)与模拟数据(红线)的对比

    图(a)中红线表示基于初始模型正演计算的数据,图(b)中红线表示基于交叉梯度为αt=10反演模型正演计算的数据,下同

    Figure  7.   The comparison of true data (black line) and calculated data (red line) for early arrivals and surface waves in the synthetic tests

    The red line in Fig.(a) represents the forward calculation date associ-ated with the initial model,the red line in Fig.(b) represents the forward calaulation data resulted from inversion model with cross-gradient weighting αt=10,the same below

    图  6   交叉梯度权重αt=10时理论数据的联合反演结果

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  6.   The synthetic data inversion results with cross-gradient weighting αt=10

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  8   ωP取不同值时反演的模型与真实模型之间的差异

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  8.   Differences between the true model and the inverted model with different ωp

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  9   实际测试数据的初始输入模型

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  9.   Initial models for real data tests

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  11   交叉梯度权重αt= 0时实际数据的联合反演结果

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  11.   The real data inversion results with cross-gradient weighting αt= 0

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  12   交叉梯度权重αt=10时实际数据的联合反演结果

    (a) vP模型;(b) vS模型;(c) QP模型;(d) QS模型

    Figure  12.   The real data inversion results with cross-gradient weighting αt=10

    (a) vP model;(b) vS model;(c) QP model;(d) QS model

    图  13   实际数据测试的初至波和面波的真实数据(黑线)与基于初始模型(a)和反演模型(b)模拟数据(红线)的对比

    Figure  13.   The comparison of true data (black line) and calculated data (red line) for early arrivals and surface waves associated with initial models (a) and inversion models (b)

    图  10   不同交叉梯度权重下初至波(a)和面波(b)的不匹配度随迭代次数的变化

    Figure  10.   Misfit variation of initial arrival data (a) and surface wave data (b) with iteration number by different cross-gradient weightings

  • 杨文采,焦富光. 1987. 利用联合反演技术进行反射地震的波速成象[J]. 地球物理学报,30(6):617–627

    Yang W C,Jiao F G. 1987. Velocity imaging from reflection seismic data by joint inversion techniques[J]. Chinese Journal of Geophysics,30(6):617–627 (in Chinese)

    张树林,朱介寿,贺振华. 1993. 井间地震和逆VSP联合层析成像[J]. 石油地球物理勘探,28(5):577–583

    Zhang S L,Zhu J S,He Z H. 1993. Joint tomography of interborehole seismic data and inverse VSP data[J]. Oil Geophysical Prospecting,28(5):577–583 (in Chinese)

    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W. H. Freeman and Company: 183–186.

    Auken E,Christiansen A V. 2004. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics,69(3):752–761

    Beaty K S,Schmitt D R,Sacchi M. 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophys J Int,151(2):622–631

    Colombo D, Mantovani M, Hallinan S, Virgilio M. 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: A CRB field study[C]//Proceedings of the 2008 Annual International Meeting. Las Vegas: SEG: 2674–2678.

    Colombo D,McNeice G,Rovetta D,Sandoval-Curiel E,Turkoglu E,Sena A. 2016. High-resolution velocity modeling by seismic-airborne TEM joint inversion:A new perspective for near-surface characterization[J]. The Lead Edge,35(11):977–985

    Gallardo L A,Meju M A. 2003. Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data[J]. Geophys Res Lett,30(13):1658

    Gallardo L A,Meju M A. 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints[J]. J Geophys Res,109(B3):B03311

    Gallardo L A,Meju M A. 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification[J]. Geophys J Int,169(3):1261–1272

    Hestenes M R,Stiefel E. 1952. Methods of conjugate gradients for solving linear systems[J]. J Res Nat Bur Stand,49:409–436

    Kamei R, Pratt R G. 2008. Waveform tomography strategies for imaging attenuation structure with cross-hole data[C]//Proceedings of the 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008. Houten: EAGE.

    Kjartansson E. 1979. Constant Q-wave propagation and attenuation[J]. J Geophys Res,84(B9):4737–4748

    Knopoff L. 1964. Q[J]. Rev Geophys,2(4):625–660

    Moorkamp M,Jones A G,Eaton D W. 2007. Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm:Are seismic velocities and electrical conductivities compatible?[J]. Geophys Res Lett,34(16):L16311

    Odebeatu E,Zhang J H,Chapman M,Liu E R,Li X Y. 2006. Application of spectral decomposition to detection of dispersion anomalies associated with gas saturation[J]. Lead Edge,25(2):206–210

    Pramanik A G, Singh V, Dubey A K, Painuly P K, Sinha D P. 2000. Estimation of Q from borehole data and its application to enhance surface seismic resolution: A case study[C]//Proceedings of the 70th SEG Annual International Meeting. Alberta: SEG: 2013–2016.

    Pratt R G,Shipp R M. 1999. Seismic waveform inversion in the frequency domain,part 2:Fault delineation in sediments using crosshole data[J]. Geophysics,64(3):902–914

    Shearer P M. 1999. Introduction to Seismology[M]. Cambridge: Cambridge University Press: 91.

    Smithyman B,Pratt R G,Hayles J,Wittebolle R. 2009. Detecting near-surface objects with seismic waveform tomography[J]. Geophysics,74(6):WCC119–WCC127

    Stewart R R. 1983. Iterative one-dimensional waveform inversion of VSP data[C]//Proceedings of the 1983 Annual International Meeting. Las Vegas: SEG: 535–538.

    Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-Posed Problems[M]. New York: Wiley: 1–272.

    Tryggvason A,Rögnvaldsson S T,Flóvenz Ó G. 2002. Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath southwest Iceland[J]. Geophys J Int,151(3):848–866

    Tryggvason A,Linde N. 2006. Local earthquake (LE) tomography with joint inversion for P- and S-wave velocities using structural constraints[J]. Geophys Res Lett,33(7):L07303

    Vozoff K,Jupp D L B. 1975. Joint inversion of geophysical data[J]. Geophys J Int,42(3):977–991

    Wang Y,Zhang J. 2017. Pseudo 2D elastic waveform inversion for attenuation in the near surface[J]. J Appl Geophys,143:129–140

    Wang Y H. 2002. A stable and efficient approach of inverse Q filtering[J]. Geophysics,67(2):657–663

    Winkler K,Nur A. 1979. Pore fluids and seismic attenuation in rocks[J]. Geophys Res Lett,6(1):1–4

    Zhou C X,Cai W Y,Luo Y,Schuster G T,Hassanzadeh S. 1995. Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data[J]. Geophysics,60(3):765–773

    Zhu T Y,Carcione J M. 2014. Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives[J]. Geophys J Int,196(3):1787–1795

    Zhu T Y,Harris J M,Biondi B. 2014. Q-compensated reverse-time migration[J]. Geophysics,79(3):S77–S87

    Zhu T Y,Harris J M. 2015. Improved estimation of P-wave velocity,S-wave velocity,and attenuation factor by iterative structural joint inversion of crosswell seismic data[J]. J Appl Geophys,123:71–80

  • 期刊类型引用(9)

    1. 孙路强,张明东,康健,刘建波. 低成本地磁场监测设备的设计与实现. 地震工程学报. 2024(03): 665-671 . 百度学术
    2. 孙路强,白仙富,康健,曾宁,朱宏,张明东. 适于野外高密度部署的低成本地磁场监测设备的设计与实现(英文). Applied Geophysics. 2024(03): 505-512+618 . 百度学术
    3. ZHANG Bing,ZHU Xiaoyi,WANG Xiaolei,XING Lili,XUE Bing,LI Jiang,GAO Shanghua,SU Peng,WANG Yuru,WANG Chuhan. Research on High Precision Borehole Temperature Measurement Technology. Acta Geologica Sinica(English Edition). 2024(S1): 81-83 . 必应学术
    4. ZHANG Bing,ZHU Xiaoyi,WU Qiong,XUE Bing,XING Lili,WU Yanxiong,SU Peng,WANG Xiaolei,WANG Yuru,WANG Chuhan. Measurement and Analysis of Vibration Effect of Free-falling Corner Cube Driving Mechanism in Free Fall Absolute Gravimeter. Acta Geologica Sinica(English Edition). 2024(S1): 84-86 . 必应学术
    5. 张旸,吴琼,滕云田,黄家亮. 激光干涉绝对重力仪数据采集与处理的时间优化方法. 仪器仪表学报. 2021(08): 130-136 . 百度学术
    6. 吴琼,滕云田,张兵,黄大伦. 绝对重力仪研制中仪器测量高度的计算. 武汉大学学报(信息科学版). 2017(12): 1773-1778 . 百度学术
    7. 吴琼,滕云田,张兵,郭有光. 基于激光干涉法的地表重力垂直梯度测量系统设计及试验. 地震学报. 2016(05): 794-802 . 本站查看
    8. 王劲松,吴琼,徐行,滕云田,廖开训,王建格. 新型绝对重力仪在海洋重力基点测量中的应用. 海洋测绘. 2016(05): 43-46 . 百度学术
    9. 杨厚丽,郭唐永,邹彤. 绝对重力仪中3种数据处理方法比较. 内陆地震. 2016(02): 144-148 . 百度学术

    其他类型引用(12)

图(13)
计量
  • 文章访问数:  1307
  • HTML全文浏览量:  599
  • PDF下载量:  35
  • 被引次数: 21
出版历程
  • 收稿日期:  2017-11-08
  • 修回日期:  2017-12-25
  • 网络出版日期:  2018-08-21
  • 发布日期:  2018-08-31

目录

    /

    返回文章
    返回