基于强震动数据的龙门山地区地震动预测模型参数反演

傅磊, 李小军, 荣棉水, 陈苏, 周越

傅磊, 李小军, 荣棉水, 陈苏, 周越. 2018: 基于强震动数据的龙门山地区地震动预测模型参数反演. 地震学报, 40(3): 374-386. DOI: 10.11939/jass.20170215
引用本文: 傅磊, 李小军, 荣棉水, 陈苏, 周越. 2018: 基于强震动数据的龙门山地区地震动预测模型参数反演. 地震学报, 40(3): 374-386. DOI: 10.11939/jass.20170215
Fu Lei, Li Xiaojun, Rong Mianshui, Chen Su, Zhou Yue. 2018: Parameter estimation of ground-motion prediction model in Longmenshan region based on strong motion data. Acta Seismologica Sinica, 40(3): 374-386. DOI: 10.11939/jass.20170215
Citation: Fu Lei, Li Xiaojun, Rong Mianshui, Chen Su, Zhou Yue. 2018: Parameter estimation of ground-motion prediction model in Longmenshan region based on strong motion data. Acta Seismologica Sinica, 40(3): 374-386. DOI: 10.11939/jass.20170215

基于强震动数据的龙门山地区地震动预测模型参数反演

基金项目: 国家重点研发计划项目(2016YFC1402800)、中央级公益性科研院所基本科研业务费专项(DQJB17T01,DQJB16B14)和国家自然科学基金(51708517)共同资助
详细信息
    通讯作者:

    李小军: e-mail: beerli@vip.sina.com

  • 中图分类号: P315.9

Parameter estimation of ground-motion prediction model in Longmenshan region based on strong motion data

  • 摘要: 基于2008—2015年龙门山地区的强震动记录,采用广义线性反演法计算了龙门山地区的震源参数、品质因子以及83个强震动台站的局部场地放大系数。结果显示:芦山地震发生之前,汶川地震余震的应力降随时间的增加而逐渐增大;芦山地震发生之后,龙门山断裂带上余震的应力降明显减小,并在之后随时间呈缓慢增大的趋势;部分MS≥4.7余震事件的加速度震源谱中出现明显的高频衰减现象。通过对应力降随时间变化规律的分析认为,这种高频衰减现象可能与震级大小和震源破裂滑动的最大速率有关。此外,反演得到了山区和盆地地区的品质因子分别为Qf )=264 f 0.75Qf )=223 f 1.01;同时获取了龙门山地区83个强震动台站的局部场地放大系数,并计算了基于NGA场地分类标准的A类、 B类和C类场地的平均场地放大系数。结果显示,以上3类场地的平均场地放大系数具有相似的峰值,但是随着场地趋于软弱,峰值平台区向低频部分发育。
    Abstract: Based on generalized linear inversion scheme, strong motion data recorded from 2008 to 2015 is used to estimate source parameters, quality factor and local site amplification coefficient of 83 strong motion observation stations of Longmenshan region. The result shows that the stress drops of Wenchuan aftershocks tended to increase with time before occurrence of Lushan main shock, after which the stress drops of aftershocks decreased noticeably and then increased slowly with time. Furthermore, a significant high-frequency attenuation phenomenon was observed in source spectra of some aftershocks with MS≥4.7. According to analyses on the temporal evolution tendency of stress drop, it is inferred that the phenomenon may be related with magnitude and the maximal source rupture slip rate of individual event. As a result, the quality factor of mountain and basins inverted in this study is Qf )=264 f 0.75 and Qf )=223 f 1.01, respectively. Finally, the obtained site amplification coefficients of 83 strong motion observation stations are classified into NGA site class A, B and C, and the average site amplification coefficients of the three site classes are calculated. The results indicate that the peak amplification coefficients of the three site classes are similar, and the peak platforms tend to develop to lower frequencies as the site becomes softer.
  • 图  1   强震动台站和地震事件的地理位置

    Figure  1.   Geographical location of selected strong motion stations and events

    图  2   盆地地区(a)和山区(b)的残差及其标准差σ

    Figure  2.   The residual and standard derivation σ of basin area (a) and mountainous area (b)

    图  3   3.0<MS≤5.0范围内各震级的加速度震源谱

    Figure  3.   Acceleration source spectra of the events with MS3.0 to 5.0

    图  4   汶川地震和芦山地震余震的应力降Δσ随时间的变化趋势

    Figure  4.   Temporal evolution of stress drop Δσ in Wenchuan and Lushan aftershocks

    图  5   两组数据中MS4.7,4.8和4.9的平均震源谱

    第一组为汶川地震和芦山地震主震发生后1个月之内的数据,第二组为其它时段内的数据

    Figure  5.   Average source spectrum of MS4.7,4.8 and 4.9 obtained from two datasets

    Group 1 includes events occurred during the first month after the origin of Wenchuan and Lushan mainshocks,group 2 includes events occurred during other periods

    图  6   第一组(a)和第二组(b)的M0-f0相关性比较,灰色区域为本文结果±1倍标准差

    Figure  6.   Comparison of M0-f0 correlation for the data of group 1 (a) and 2 (b),where gray areas represent the results of this study ±1 standard derivation

    图  7   本文选用地震事件的MW-MS的相关性

    Figure  7.   MW-MS correlation of the events used in this study

    图  8   山区和盆地地区的品质因子Q

    Figure  8.   Quality factor Q obtained respectively for mountainous and basin regions

    图  9   20个强震动台站的GIT与HVSR得到的结果比较

    Figure  9.   Local site amplification coefficients of 20 strong motion station sites obtained from GIT and HVSR

    图  10   基于NGA场地分类标准的场地放大系数

    (a) A类场地;(b) B类场地;(c) C类场地

    Figure  10.   Average site amplification coefficients based on the NGA site classification

    (a) Site class A;(b) Site class B;(c) Site class C

  • 范军, 汪智, 陈银, 刘杰, 郑斯华, 吴朋. 2012. 四川地区震源参数和台站场地响应初步研究[J]. 四川地震, (3): 1-8.

    Fan J, Wang Z, Chen Y, Liu J, Zheng S H, Wu P. 2012. Preliminary study on both earthquake source parameters and site responses of seismic stations in Sichuan Province[J]. Earthquake Research in Sichuan, (3): 1-8(in Chinese).

    傅磊, 李小军. 2017. 龙门山地区的kappa (κ0)模型及汶川MS8.0地震的强地震动模拟[J]. 地球物理学报, 60(8): 2935-2947.

    Fu L, Li X J. 2017. The kappa (κ0) model of the Longmenshan region and its application to simulation of strong ground-motion by the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 60(8): 2935-2947(in Chinese).

    华卫, 陈章立, 郑斯华. 2009. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 52(2): 365-371.

    Hua W, Chen Z L, Zheng S H. 2009. A study on segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 52(2): 365-371(in Chinese).

    乔慧珍, 张永久, 程万正, 刘杰. 2006. 川西北地区介质衰减特性研究[J]. 地震地磁观测与研究, 27(4): 1-7.

    Qiao H Z, Zhang Y J, Cheng W Z, Liu J. 2006. The inversion of the inelastic coefficient of the medium in north-west of Sichuan Province[J]. Seismological and Geomagnetic Observation and Research, 27(4): 1-7(in Chinese).

    任叶飞. 2014. 基于强震动记录的汶川地震场地效应研究[D]. 哈尔滨: 中国地震局工程力学研究所: 74–77.

    Ren Y F. 2014. Study on Site Effect in the Wenchuan Earthquake Using Strong Motion Recordings[D]. Harbin: Institute of Engi-neering Mechanics, China Earthquake Administration: 74–77 (in Chinese).

    温瑞智, 王宏伟, 任叶飞, 冀昆. 2015. 芦山余震震源参数及震源区品质因子反演[J]. 哈尔滨工业大学学报, 47(4): 58-63.

    Wen R Z, Wang H W, Ren Y F, Ji K. 2015. Estimation of source parameters and quality factor based on generalized inversion method in Lushan earthquake[J]. Journal of Harbin Institute of Technology, 47(4): 58-63(in Chinese).

    胥颐, 黄润秋, 李志伟, 徐亚, 刘劲松, 刘建华. 2009. 龙门山构造带及汶川震源区的S波速度结构[J]. 地球物理学报, 52(2): 329-338.

    Xu Y, Huang R Q, Li Z W, Xu Y, Liu J S, Liu J H. 2009. S-wave velocity structure of the Longmen shan and Wenchuan earthquake area[J]. Chinese Journal of Geophysics, 52(2): 329-338(in Chinese).

    喻畑, 李小军. 2012. 汶川地震余震震源参数及地震动衰减与场地影响参数反演分析[J]. 地震学报, 34(5): 621-632.

    Yu T, Li X J. 2012. Inversion of strong motion data for source parameters of Wenchuan aftershocks, attenuation function and average site effect[J]. Acta Seismologica Sinica, 34(5): 621-632(in Chinese).

    张永久, 乔慧珍, 程万正, 刘杰. 2007. 四川盆地地区介质衰减特征研究[J]. 地震研究, 30(1): 43-48.

    Zhang Y J, Qiao H Z, Cheng W Z, Liu J. 2007. Attenuation characteristics of the media in Sichuan basin region[J]. Journal of Seismological Research, 30(1): 43-48(in Chinese).

    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB 50011—2010建筑抗震设计规范(2016年版)[S]. 北京: 中国建筑工业出版社: 18–21.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2016. GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–21 (in Chinese).

    Atkinson G M, Mereu R F. 1992. The shape of ground motion attenuation curves in southeastern Canada[J]. Bull Seismol Soc Am, 82(5): 2014-2031.

    Atkinson G M. 2008. Ground-motion prediction equations for eastern North America from a referenced empirical approach: Implications for epistemic uncertainty[J]. Bull Seismol Soc Am, 98(3): 1304-1318.

    Beresnev I A. 2001. What we can and cannot learn about earthquake sources from the spectra of seismic waves[J]. Bull Seismol Soc Am, 91(2): 397-400.

    Boore D M. 2003. Simulation of ground motion using the stochastic method[J]. Pure Appl Geophy, 160(3/4): 635-676.

    Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophy Res, 75(26): 4997-5009.

    Campbell K W. 2003. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America[J]. Bull Seismol Soc Am, 93(3): 1012-1033.

    Chiou B, Darragh R, Gregor N, Silva W. 2008. NGA project strong-motion database[J]. Earthq Spectra, 24(1): 23-44.

    Douglas J, Edwards B. 2016. Recent and future developments in earthquake ground motion estimation[J]. Earth Sci Rev, 160: 203-219.

    Fu L, Li X J. 2016. The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and adjacent regions[J]. Bull Seismol Soc Am, 106(5): 1979-1990.

    Hassani B, Zafarani H, Farjoodi J, Ansari A. 2011. Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran[J]. Soil Dyn Earthq Eng, 31(10): 1397-1413.

    Konno K, Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am, 88(1): 228-241.

    Li X J, Zhou Z H, Yu H Y, Wen R Z, Lu D W, Huang M, Zhou Y N, Cu J W. 2008. Strong motion observations and recordings from the great Wenchuan earthquake[J]. Earthq Eng Eng Vib, 7(3): 235-246.

    Moya A, Aguirre J, Irikura K. 2000. Inversion of source parameters and site effects from strong ground motion records using genetic algorithms[J]. Bull Seismol Soc Am, 90(4): 977-992.

    Paige C C, Saunders M A. 1982a. LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw, 8(1): 43-71.

    Paige C C, Saunders M A. 1982b. Algorithm 583: LSQR: Sparse linear equations and least squares problems[J]. ACM Trans Math Softw, 8(2): 195-209.

    Papageorgiou A S, Aki K. 1983. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I. Description of the model[J]. Bull Seismol Soc Am, 73(3): 693-722.

    Parolai S, Bindi D, Baumbach M, Grosser H, Milkereit C, Karakisa S, Zünbül S. 2004. Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake[J]. Bull Seismol Soc Am, 94(3): 1096-1108.

    Ren Y F, Wen R Z, Yamanaka H, Kashima T. 2013. Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 12(2): 165-184.

    Roecker S W, Tucker B, King J, Hatzfeld D. 1982. Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes[J]. Bull Seismol Soc Am, 72(1): 129-149.

    Wen J, Chen X F. 2012. Variations in fmax along the ruptured fault during the MW 7.9 Wenchuan earthquake of 12 May 2008[J]. Bull Seismol Soc Am, 102(3): 991-998.

图(10)
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  1032
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-01-15
  • 网络出版日期:  2018-03-13
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回