基于Chester-Higgs模型探讨摩擦生热对断层演化进程的影响

高雅琪, 史保平

高雅琪, 史保平. 2019: 基于Chester-Higgs模型探讨摩擦生热对断层演化进程的影响. 地震学报, 41(1): 13-32. DOI: 10.11939/jass.20170229
引用本文: 高雅琪, 史保平. 2019: 基于Chester-Higgs模型探讨摩擦生热对断层演化进程的影响. 地震学报, 41(1): 13-32. DOI: 10.11939/jass.20170229
Gao Yaqi, Shi Baoping. 2019: Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model. Acta Seismologica Sinica, 41(1): 13-32. DOI: 10.11939/jass.20170229
Citation: Gao Yaqi, Shi Baoping. 2019: Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model. Acta Seismologica Sinica, 41(1): 13-32. DOI: 10.11939/jass.20170229

基于Chester-Higgs模型探讨摩擦生热对断层演化进程的影响

基金项目: 中国-东南亚毗邻区大震活动地球动力学研究(2015DFA21260)资助
详细信息
    通讯作者:

    高雅琪: e-mail: gaoyaqi16@mails.ucas.edu.cn

  • 中图分类号: P315.3

Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model

  • 摘要: 速率和状态相依赖的摩擦定律是本文采用的重要定律。结合Chester-Higgs摩擦模型和McKenzie-Brune摩擦生热模型,在一维弹簧-滑块-断层近似模型下,利用四阶变步长的Dormand-Prince算法,研究探讨了断层摩擦生热对断层演化的影响。结果表明:与忽略温度影响的情形相比,摩擦生热造成的温度上升可导致断层滑移时刻的略微提前,并伴随着摩擦系数和状态变量的下降,同时也使得断层的滑移量和应力降略有减小,而滑移速率有所增大;另外,在考虑温度影响时,有效正应力和临界滑移距离也会影响断层的演化过程,断层上的有效正应力越大,断层失稳时刻越提前,温度上升越明显;断层的临界滑移距离越大,断层失稳时刻则越迟,温度上升越显著,但当临界滑移距离超过5 cm时,具有不同临界滑移距离的断层,失稳时的温度则基本保持一致。
    Abstract: Rate- and state-dependent friction (RSF) law is an empirical law derived from labo-ratory experiments related to rock friction. RSF law has been used to quantitatively describe complex fault friction processes. Currently, it has emerged as the theoretical basis for the study of seismogenesis and earthquake faulting. With a combination of the Chester-Higgs friction model and the McKenzie-Brune frictional heat generation model, in this study we have investi-gated the effect of frictional heating process on the fault temporal evolution based on a spring-slider-fault system subjected to a rate- and state-dependent friction law. The system equations are solved efficiently by Dormand-Prince method with adaptive steps. The results show that, compared with the case in which the temperature effect is neglected (unheated fault), the rise of temperature caused by frictional heating can lead to a slight time advance of fault instability, accompanied by abrupt decreases of the friction coefficient and state variable, respectively. In the case when the temperature effect is taken into consideration (heated fault), the slip and stress drop on the fault are slightly smaller than that on the unheated fault, while the slip rate becomes larger. In addition, the effective normal stress and critical slip distance can also affect the fault temporal evolution. The greater the effective normal stress on the heated fault is, the earlier the fault instability occurs, accompanied with higher temperature rising. The larger the critical slip distance of the heated fault is, the later the fault instability occurs with a significant temperature increase. However, when the critical slip distance is larger than 5 cm, the peak temperatures are almost the same when the fault is unstable.
  • 图  1   断层力学模型

    (a) 一维断层模型;(b) 一维弹簧-滑块-断层模型

    Figure  1.   Schematic illustration of the mechanical behavior of earthquake fault

    (a) 1D fault model;(b) 1D spring-slider-fault model

    图  3   小时间尺度下失稳前后断层模型的演化

    (a) 滑移速率 ${\dot \delta}$ 演化图;(b) 摩擦系数μ演化图;(c) 状态变量Θ演化图;(d) 温度T演化图

    Figure  3.   Simulated time histories of fault evolution from small time scale

    The evolution of system around the onset of instability is shown. Figs. (a),(b),(c) and (d) show the evolutions of slip rate ${\dot \delta}$,frictional coefficient μ,state variable Θ and temperature change T,respectively

    图  4  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    (a) 摩擦系数-滑动速率相图;(b) 摩擦系数-位移相图;(c) 位移-滑动速率相图

    Figure  4.  

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  2   大时间尺度下断层模型的演化图

    (a) 滑移速率 ${\dot \delta}$;(b) 摩擦系数μ;(c) 状态变量Θ;(d) 温度T

    Figure  2.   Simulated time histories of fault evolution from large time scale

    (a),(b),(c) and (d) show the evolutions of slip rate ${\dot \delta}$,frictional coefficient μ,state variable Θ and temperature change T,respectively

    图  5   与温度改变量有关的相图

    (a) 温度改变量-滑动速率相图;(b) 温度改变量-位移相图

    Figure  5.   Phase diagram related to temperature change

    (a) Phase diagrams of slip rate versus temperature change; (b) Slip displacement versus temperature change

    图  6   不同有效正应力对应的断层模型的演化(小时间尺度)

    (a) 滑移速率 ${\dot \delta}$ 演化图;(b) 摩擦系数μ演化图;(c) 状态变量Θ演化图;(d) 温度T演化图

    Figure  6.   Simulated time histories of fault evolution corresponding to different effective normal stresses (small time scale)

    Figs. (a),(b),(c) and (d) show the evolutions of slip rate ${\dot \delta}$,frictional coefficient μ,state variable Θ and temperature change T,respectively

    图  7   有效正应力对应力降Δτ (a)、断层半径rc (b)、地震矩M0 (c)和矩震级MW (d)的影响

    Figure  7.   Influences of effective normal stress on variation of stress drop Δτ (a),fault radius rc (b),seismic moment M0 (c) and moment magnitude MW (d)

    图  8   不同临界滑移距离所对应的断层模型的演化(大时间尺度)

    (a) 滑移速率 ${\dot \delta}$ 演化图;(b) 摩擦系数μ演化图;(c) 状态变量Θ演化图;(d) 温度T演化图

    Figure  8.   Simulated time histories of fault evolution corresponding to different critical slip distances (large time scale)

    Figs. (a),(b),(c) and (d) show the evolutions of slip rate ${\dot \delta}$,frictional coefficient μ,state variable Θ and temperature change T,respectively

    图  9   临界滑移距离对地震参数的影响

    (a)—(d)分别为应力降Δτ、断层半径rc、地震矩M0和矩震级MW随临界滑移距离Dc的变化

    Figure  9.   Influences of critical slip distance on seismic parameters

    Figs.(a) to (d) are variation of stress drop Δτ,fault radius rc,seismic moment M0 and moment magnitude MW plotted against critical slip distance Dc

    表  1   一维弹簧-滑块-断层模型参数的定义和取值

    Table  1   Definitions and values of parameters for 1D spring-slider-fault model

    参数 含义 取值 参数 含义 取值
    a 直接影响系数 0.012 ${\dot \delta }$ u 失稳速率 1 m/s
    b 演化影响系数 0.017 T* 参考温度 550 K
    σ 有效正应力 100—1 000 MPa Tini 初始温度 550 K
    Dc 临界滑移距离 0.01—10 cm Qa 直接影响的表面激活能 105 J/mol
    k/kc 断层刚度与临界刚度的比值 ≈1 Qb 演化影响的表面激活能 105 J/mol
    μ0 TT*时以 ${\dot \delta} $ ${\dot \delta }$ *稳定滑动的摩擦系数 0.6 R 气体常数 8.314
    μini 初始摩擦系数 0.623 P 介质密度 2 600 kg/m3
    ${\dot \delta} $ 0 远场加载速率 3.5 cm/a c 介质比热 1 000 J/(kg·K)
    ${\dot \delta }$ * 参考速率 3.5 cm/a κ 介质固体热扩散系数 10−6 m2/s
    ${\dot \delta }$ ini 初始速率 0.035 cm/a
    下载: 导出CSV
  • 陈运泰. 2003. 地震参数: 数字地震学在地震预测中的应用[M]. 北京: 地震出版社: 7–11.

    Chen Y T. 2003. Earthquake Parameters: Application of Digital Seismology in Earthquake Prediction[M]. Beijing: Seismological Press: 7–11 (in Chinese).

    李世愚, 和泰名, 尹祥础. 2015. 岩石断裂力学[M]. 北京: 科学出版社: 1−208.

    Li S Y, He T M, Yin X C. 2015. Fracture Mechanics of Rock[M]. Beijing: Science Press: 1−208.

    姚路,马胜利. 2013. 断层同震滑动的实验模拟:岩石高速摩擦实验的意义、方法与研究进展[J]. 地球物理学进展,28(2):607–623

    Yao L,Ma S L. 2013. Experimental simulation of coseismic fault sliding:Significance,technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics,28(2):607–623 (in Chinese)

    姚路. 2014. 龙门山断裂带断层泥中速-高速摩擦性质的实验研究[J]. 国际地震动态,8:41–42 doi: 10.3969/j.issn.0235-4975.2014.02.010

    Yao L. 2014. Experimental study on mid-high speed tribological properties of fault mud in Longmenshan fault zone[J]. Recent Development in World Seismology,8:41–42 (in Chinese)

    姚路, 马胜利, 嶋本, 利彦. 2016. 利用岩石高速摩擦实验认识地震断层滑动的物理化学过程: 现状与展望[C]//2016中国地球科学联合学术年会论文集(二十五)——专题48: 地震震源物理研究进展、专题49: 利用人工震源探测地下介质结构及其变化. 北京: 中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会: 1357.

    Yao L, Ma S L, Dao B, Li Y. 2016. Recognition of physicochemical process of seismic fault slip by high speed friction experiment of rocks: Status and prospect[C]// The Paper Collection of 2016 Annual Meeting of Chinese Geoscience Union (Twenty-fifth)-Topic 48: Advances in Seismic Source Physics, Topic 49: Detection of Underground Medium Structure and Change by Artificial Source. Beijing: Chinese Geophysical Society, Seismological Society of China, Organizing Committee of National Symposium on Petrology and Geodynamics, Professional Committee of Tectonic Geology and Geodynamics of the Chinese Geological Society, Regional Geology and Mineralization Committee of the Chinese Geological Society: 1357.

    曾融生. 1984. 固体地球物理学导论[M]. 北京: 科学出版社: 351–363.

    Zeng R S. 1984. Introduction of Solid Geophysics[M]. Beijing: Science Press: 351–363 (in Chinese).

    Ampuero J P,Rubin A M. 2008. Earthquake nucleation on rate and state faults:Aging and slip laws[J]. J Geophys Res,113(B1):B01302

    Barbot S,Lapusta N,Avouac J P. 2012. Under the hood of the earthquake machine:Toward predictive modeling of the seismic cycle[J]. Science,336(6082):707–710 doi: 10.1126/science.1218796

    Beeler N M,Lockner D A. 2003. Why earthquakes correlate weakly with the solid Earth tides:Effects of periodic stress on the rate and probability of earthquake occurrence[J].J Geophys Res,108(B8):2391 doi: 10.1029/2001JB001518

    Bhattacharya P,Rubin A M. 2014. Frictional response to velocity steps and 1-D fault nucleation under a state evolution law with stressing-rate dependence[J]. J Geophys Res,119(3):2272–2304 doi: 10.1002/2013JB010671

    Bizzarri A,Cocco M,Andrews D J,Boschi E. 2001. Solving the dynamic rupture problem with different numerical approaches and constitutive laws[J]. Geophys J Int,144(3):656–678 doi: 10.1046/j.1365-246x.2001.01363.x

    Bizzarri A. 2010. Determination of the Temperature Field due to Frictional Heating on a Sliding Interface[R]. Istituto Nazionale di: 1–16.

    Bizzarri A. 2011. Temperature variations of constitutive parameters can significantly affect the fault dynamics[J]. Earth Planet Sci Lett,306(3/4):272–278

    Blanpied M L,Tullis T E,Weeks J D. 1998. Effects of slip,slip rate,and shear heating on the friction of granite[J]. J Geophys Res,103(B1):489–511 doi: 10.1029/97JB02480

    Byerlee J D. 1970. The mechanics of stick-slip[J]. Tectonophysics,9(5):475–486 doi: 10.1016/0040-1951(70)90059-4

    Byerlee J D. 1978. Friction of rocks[J]. Pure Appl Geophys,116(4):615–626

    Chester F M,Higgs N G. 1992. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions[J]. J Geophys Res,97(B2):1859–1870 doi: 10.1029/91JB02349

    Chester F M. 1994. Effects of temperature on friction:Constitutive equations and experiments with quartz gouge[J]. J Geophys Res,99(B4):7247–7261 doi: 10.1029/93JB03110

    Dieterich J H. 1979. Modeling of rock friction:1. Experimental results and constitutive equations[J]. J Geophys Res,84(B5):2161–2168 doi: 10.1029/JB084iB05p02161

    Dieterich J H. 1992. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics,211(1/4):115–134

    Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res,99(B2):2601–2618 doi: 10.1029/93JB02581

    Gu J C,Rice J R,Ruina A L,Tse S T. 1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. J Mech Phys Solids,32(3):167–196 doi: 10.1016/0022-5096(84)90007-3

    Gu Y J,Wong T F. 1991. Effects of loading velocity,stiffness,and inertia on the dynamics of a single degree of freedom spring-slider system[J]. J Geophys Res,96(B13):21677–21691 doi: 10.1029/91JB02271

    Hatano T. 2015. Rate and state friction law as derived from atomistic processes at asperities[J/OL]. Geophys J Int [2017−09−21]. https://arxiv.org/pdf/1512.05078.pdf.

    He C R,Wong T F,Beeler N M. 2003. Scaling of stress drop with recurrence interval and loading velocity for laboratory-derived fault strength relations[J]. J Geophys Res,108(B1):2037

    He C R,Luo L,Hao Q M,Zhou Y S. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. J Geophys Res,118(7):3408–3430 doi: 10.1002/jgrb.50280

    Kame N,Fujita S,Nakatani M,Kusakabe T. 2013. Effects of a revised rate- and state-dependent friction law on aftershock triggering model[J]. Tectonophysics,600:187–195 doi: 10.1016/j.tecto.2012.11.028

    Kaneko Y,Avouac J P,Lapusta N. 2010. Towards inferring earthquake patterns from geodetic observations of interseismic coupling[J]. Nat Geosci,3(5):363–369 doi: 10.1038/ngeo843

    Kato N. 2001. Effect of frictional heating on pre-seismic sliding:A numerical simulation using a rate-,state- and temperature-dependent friction law[J]. Geophys J Int,147(1):183–188 doi: 10.1046/j.0956-540x.2001.01531.x

    Kimura T. 2009. On dormand-prince method[EB/OL]. [2009−09−24]. http://depa.fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf.

    King G C P,Cocco M. 2001. Fault interaction by elastic stress changes:New clues from earthquake sequences[J]. Adv Geophys,44:1–38 doi: 10.1016/S0065-2687(00)80006-0

    Lu Z,He C R. 2014. Frictional behavior of simulated biotite fault gouge under hydrothermal conditions[J]. Tectonophysics,622:62–80 doi: 10.1016/j.tecto.2014.03.002

    Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annu Rev Earth Plant Sci,26:643–696 doi: 10.1146/annurev.earth.26.1.643

    McKenzie D,Brune J N. 1972. Melting on fault planes during large earthquakes[J]. Geophys J Int,29(1):65–78 doi: 10.1111/j.1365-246X.1972.tb06152.x

    Perfettini H,Avouac J P. 2004a. Postseismic relaxation driven by brittle creep:A possible mechanism to reconcile geodetic mea-surements and the decay rate of aftershocks,application to the Chi-Chi earthquake,Taiwan[J]. J Geophys Res,109(B2):B02304

    Perfettini H,Avouac J P. 2004b. Stress transfer and strain rate variations during the seismic cycle[J]. J Geophys Res,109(B6):B06402

    Raleigh C B,Healy J H,Bredehoeft J D. 1976. An experiment in earthquake control at Rangely,Colorado[J]. Science,191(4233):1230–1237 doi: 10.1126/science.191.4233.1230

    Rice J R,Tse S T. 1986. Dynamic motion of a single degree of freedom system following a rate and state dependent friction law[J]. J Geophys Res,91(B1):521–530 doi: 10.1029/JB091iB01p00521

    Rice J R. 2006. Heating and weakening of faults during earthquake slip[J]. J Geophys Res,111:B05311

    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370 doi: 10.1029/JB088iB12p10359

    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature,391(6662):37–42 doi: 10.1038/34097

    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. New York: Cambridge University Press: 351–412.

    Segall P. 2010. Earthquake and Volcano Deformation[M]. Princeton: Princeton University Press: 332–369.

    Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature,402(6762):605–609 doi: 10.1038/45144

    Stein S, Wysession M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Malden: Blackwell Publishing: 215–217.

图(10)  /  表(1)
计量
  • 文章访问数:  2340
  • HTML全文浏览量:  752
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-28
  • 修回日期:  2018-04-23
  • 网络出版日期:  2018-11-18
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回