2008年汶川地震震源区东北端局部形变区与青川MS6.4强余震关系

倪四道, 周勇, 钱韵衣, 罗新宇, 王向腾

倪四道, 周勇, 钱韵衣, 罗新宇, 王向腾. 2018: 2008年汶川地震震源区东北端局部形变区与青川MS6.4强余震关系. 地震学报, 40(3): 268-278. DOI: 10.11939/jass.20180016
引用本文: 倪四道, 周勇, 钱韵衣, 罗新宇, 王向腾. 2018: 2008年汶川地震震源区东北端局部形变区与青川MS6.4强余震关系. 地震学报, 40(3): 268-278. DOI: 10.11939/jass.20180016
Ni Sidao, Zhou Yong, Qian Yunyi, Luo Xinyu, Wang Xiangteng. 2018: Are there links between the localized deformation in the northeastern section of Wenchuan earthquake source zone and the May 25,2008 Qingchuan strong aftershock?. Acta Seismologica Sinica, 40(3): 268-278. DOI: 10.11939/jass.20180016
Citation: Ni Sidao, Zhou Yong, Qian Yunyi, Luo Xinyu, Wang Xiangteng. 2018: Are there links between the localized deformation in the northeastern section of Wenchuan earthquake source zone and the May 25,2008 Qingchuan strong aftershock?. Acta Seismologica Sinica, 40(3): 268-278. DOI: 10.11939/jass.20180016

2008年汶川地震震源区东北端局部形变区与青川MS6.4强余震关系

基金项目: 国家然科学基金(41461164003)
详细信息
    通讯作者:

    倪四道: e-mail: sdni@whigg.ac.cn

  • 中图分类号: P315.72+5

Are there links between the localized deformation in the northeastern section of Wenchuan earthquake source zone and the May 25,2008 Qingchuan strong aftershock?

  • 摘要: 2008年汶川地震之后,通过InSAR观测到青川县木鱼镇附近存在一个长约为15 km、宽约为10 km、地表位移数十厘米的局部形变区。前人分析认为,该形变区是由MS6.4的青川强余震造成的,但拟合地表形变数据所采用的震源深度和震源机制解与地震学反演的结果具有较大差异。本文利用远震体波和瑞雷波振幅谱进一步测定了青川强余震的震源深度和震源机制解,计算了此次事件造成的地表位移场,认为青川强余震并非造成木鱼镇地区局部形变的直接原因,并讨论该局部形变区可能的成因。
    Abstract: A localized deformation zone near Muyu town of Qingchuan county was observed on the InSAR interferograms of the great 2008 Wenchuan earthquake. The Muyu deformation zone was about 15 km long and 10 km wide, with line of sight displacement up to dozens of centimeters. Some researchers proposed that the deformation zone is caused by a strong aftershock (MW6.1) in Qingchuan county on May 25, 2008, and they adopted seismic source parameters very different from seismic inversions. To verify reliability of the seismic source inversions, we use teleseismic body wave and local Rayleigh wave spectra to constrain focal depth and fault plane of the strong aftershock. Thereafter, we compute ground displacement and proposed that the aftershock was not the direct cause of the localized deformation zone. Then we discuss some candidate mechanisms which might explain the localized deformation.
  • 根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021年2月13日14时7分50秒(UTC),日本本州以东发生了一次矩震级高达MW7.2的地震,震中位于(37.745°N,141.749°E),震源深度为49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)随后发布了这次地震的矩心矩张量解(表1)。震后48小时内累计发生M>2.5余震13次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间。该事件所在区域曾于2011年3月11日发生过MW9.1特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域。

    表  1  GCMT,USGS 和本研究所得日本本州东海岸MW7.2地震矩心矩张量解
    Table  1.  The centroid moment tensor solutions for the MW7.2 earthquake in the east coast of Honshu,Janpan,from GCMT,USGS and this study
    机构矩张量/(1019 N·m)矩心参数
    MrrMttMppMrtMrpMtpτc/s北纬/°东经/°矩心深度/km
    GCMT (2021)5.540−0.647−4.8900.269−1.760−1.7409.637.60141.6350.7
    USGS (2021)(W震相)4.557−0.220−4.3370.724−0.773−1.55013.237.63141.8860.5
    USGS (2021)(体波)5.964−1.531−4.4340.313−2.151−1.15637.75141.7250.6
    本文8.588−0.147−8.440−0.217−2.755−1.00012.037.65141.4550.0
    下载: 导出CSV 
    | 显示表格

    基于对该事件震级、噪声水平及空间分辨率的综合考虑,我们收集了震中距处于34.53°—89.92°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字地震台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN) 61个台站的宽频带垂直分量数据作为观测资料,采用AK135模型计算格林函数(Wang,1999)并截取P波数据,根据震级将滤波频带设定为0.01—0.05 Hz。与Kanamori和Rivera (2008)Duputel等(2012b)以及先前的研究(张喆等,2020)相同,本文采用网格搜索的方法对矩心时空信息进行非线性反演,结果如图1所示。反演结果显示,矩心时间为12 s,矩心水平坐标为(37.65°N,141.45°E),矩心深度为50 km,其中双力偶成分占比接近100%。根据矩心矩张量解(表1图2),我们也得到了相应的最佳双力偶解(表2)。图3展示了利用反演结果计算的合成波形与观测波形的比较,二者的整体相关系数达到0.93,二次误差为5.785×10−8,大多数台站的相关系数在0.90以上。

    图  1  日本本州东海岸MW7.2地震矩心矩张量解反演过程
    (a) 矩心时间τc搜索;(b) 矩心水平空间搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc搜索;(d) 矩心相对震中的位置,红色沙滩球表示矩心矩张量解,红色星形表示震中
    Figure  1.  Inversion process of the centroid moment tensor solution for the MW7.2 earthquake in the east coast of Honshu,Japan
    (a) Search for centroid time τc;(b) Search for the horizontal location of the centroid (yellow circle);(c) Search for centroid depth hc; (d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)
    图  2  矩心矩张量反演参数以及台站分布与反演结果
    Figure  2.  The parameters of the centroid moment tensor inversion,the station distribution and the inversion results
    表  2  GCMT,USGS以及本研究得到的日本本州东海岸MW7.2地震的最佳双力偶解
    Table  2.  The best double-couple solutions for the MW7.2 earthquake in the east coast of Honshu,Japan,from USGS,GCMT and this study
    机构标量地震矩
    /(1019 N·m)
    双力偶
    成分占比
    节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    GCMT (2021)5.80099%19253802838103
    USGS (2021)(W震相)4.83196%18749743043107
    USGS (2021)(体波)5.90361%19155822535102
    本文9.008100%186548973691
    下载: 导出CSV 
    | 显示表格
    图  3  观测数据与合成数据的比较
    Figure  3.  Comparison between the observed (blue) and synthetic (red) waveforms

    与USGS和GCMT的结果(图4)相比,本文反演所得矩心时间12 s介于二者之间,而矩心位置(37.65°N,141.45°E,深度50 km)要更偏向西侧。本文反演得到的标量地震矩达到9.008×1019 N·m,换算为矩震级约MW7.24,高于其它机构(约MW7.1)的结果。此外,本文反演得到矩张量解中双力偶成分占比接近100%,这个数值要略高于GCMT和USGS (W震相)的结果,明显高于USGS (体波)发布的结果。从最佳双力偶解所确定的断层面来看,本研究的走向和倾角与其它研究结果近似,滑动角上存在接近10°的差异。经反复测试我们认为滑动角、矩心位置与其它研究结果的差异与观测资料、滤波频带的不同以及参考震中(Preliminary Determination Epicenter,缩写为PDE)的变更相关。从本文反演得到的震源机制解来看这是一次纯逆冲事件。

    图  4  2011年MW9.1地震(灰色沙滩球)后M>2.5事件以及本州东海岸MW7.2地震的余震分布和各机构发布的该主震的矩心矩张量反演结果
    Figure  4.  The centroid moment tensor solutions (colored beach-balls) from various institutions and aftershocks of the MW7.2 earthquake in east coast of Honshu as well as the M>2.5 earthquakes since the 2011 MW9.1 earthquake (gray beach-ball)

    本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自于全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!

  • 图  1   汶川地震震源区东北端InSAR位移场及余震分布(修改自Hashimoto et al,2009 )

    Figure  1.   Deformation observed by InSAR and after-shocks (circles) in the northeastern section of Wenchuan earthquake source zone(modified from Hashimoto et al, 2009

    图  2   青川强余震及用于震源参数反演的远震台站分布(a)和波形拟合残差随深度分布(b)

    Figure  2.   Teleseismic stations and the Qingchuan strong aftershocks (a) as well as waveforms misfit versus depth (b)

    图  3   青川强余震震源机制解及CAPtel反演后的远震体波观测波形(黑色)与理论波形(红色)对比图

    台网及台站代号标记在波形左侧上方,台站下方分别为震中距/方位角,波形下方的两行数字分别为波形对齐所需的时移 (上行)和相关系数百分值 (下行)

    Figure  3.   Comparison between observed (black) and synthetic (red) seismograms after the CAPtel inversion of the Qingchuan strong aftershock.

    Seismic network and stations are labeled to the left of the traces,while epicentral distance and azimuth are displayed below the station code,time shift (above) and percentile of cross correlation coefficient (below) are displayed under the waveforms

    图  4   ABKT地震台的远震直达P波及其深度震相观测与理论波形对比

    P波按照实际到时对齐,理论地震图所使用的深度标记于波形的下方

    Figure  4.   Observed and synthetic P,pP and sP for station ABKT

    The waveforms are aligned on onset of P wave,and the focal depth used in synthetics are displayed below each trace

    图  5   恩施地震台的三分量波形对比

    Figure  5.   Comparison among radial,tangential and vertical waveform recorded by station ENH

    图  6   恩施台的振幅谱 (a),频散曲线测量图 (b) 以及时间域地震波形图 (c)

    Figure  6.   Spectral amplitude versus period (a),group velocity versus period (b) and seismograms (c) at station ENH

    图  7   恩施台的瑞雷波频谱极小点周期与震源深度的关系

    Figure  7.   The dependence of period at spectral null and focal depth

    图  8   不同质心深度时的InSAR位移场

    断层位错上端点深度分别为 6.02 km (a), 11.02 km (b), 16.02 km (c)及21.02 km (d)

    Figure  8.   Prediction InSAR deformation with different depths

    The depth of the upper edge of the ruptured fault is placed at 6.02 km (a),11.02 km (b), 16.02 km (c) and 21.02 km (d),respectively

    表  1   汶川强余震目录

    Table  1   Catalog of strong aftershocks of the Wenchuan earthquake

    序号 发震时刻 (UTC) 震中位置 震源
    深度/km
    MS MS7 mL mb mB MW
    年-月-日  时:分:秒 东经/°  北纬/°
    1 2008-05-12 06:43:14 103.82 31.27 14 6.3 5.9 5.7 6.2 6.3
    2 2008-05-12 06:54:16 103.59 31.26 13 5.8 5.8 5.3 5.8 6.2
    3 2008-05-12 11:11:01 103.67 31.26 14 6.3 6.2 5.8 5.8 6.2 6.1
    4 2008-05-13 07:07:08 103.42 30.95 14 6.1 5.9 5.7 5.6 6.0
    5 2008-05-17 17:08:24 105.08 32.20 13 6.1 5.9 5.9 5.5 6.1
    6 2008-05-25 08:21:47 105.48 32.55 14 6.4 6.2 6.3 5.7 6.1 6.1
    7 2008-07-24 07:09:27 105.61 32.76 10 6.0 5.6 5.7 5.7 5.7
    8 2008-08-01 08:32:41 104.85 32.02 14 6.2 6.0 5.9 5.6 6.1
    9 2008-08-05 09:49:15 105.61 32.72 13 6.5 6.3 6.0 5.8 6.3 6.0
    注:表中序号为3,6,9的数据来自GCMT (2008),其余来自中国地震台网中心 (2008)。
    下载: 导出CSV

    表  2   2008年5月25日青川MW6.1余震震源参数对比

    Table  2   The source parameters of the May 25,2008 MW6.1 Qinchuan aftershock from various authors or agencies

    数据来源 震中位置 深度/km 节面Ⅰ 节面Ⅱ
    东经/° 北纬/° 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/°
    GCMT (2008) 105.45 32.57 27 59 84 178 149 88 6
    郑勇等 (2009) 105.39 32.62 18 63 64 −171 329 82 −26
    郭祥云等 (2010) 251 74 170 344 80 16
    吕坚等 (2008) 105.37 32.62 19*
    中国地震台网中心 (2008) 105.48 32.55 14*
    注:深度为质心深度,标*为破裂起始深度。
    下载: 导出CSV

    表  3   理论地震图及地表形变使用的速度结构模型

    Table  3   Crustal structure used in this study

    底部深度/km vP/(km·s−1 vS/(km·s−1 密度/(103 kg·m−3
    1 2.50 1.00 1.20
    2 4.00 2.10 2.40
    22 6.10 3.50 2.75
    42 6.30 3.60 2.80
    46 7.20 4.00 3.10
    8.00 4.47 3.35
    下载: 导出CSV
  • 郭祥云, 陈学忠, 李艳娥. 2010. 2008年5月12日四川汶川8.0级地震与部分余震的震源机制解[J]. 地震, 30(1): 50-60.

    Guo X Y, Chen X Z, Li Y E. 2010. Focal mechanism solutions for the 2008 MS8.0 Wenchuan earthquake and part of its aftershocks[J]. Earthquake, 30(1): 50-60 (in Chinese).

    黄媛, 吴建平, 张天中, 张东宁. 2008. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学: D辑, 38(10): 1242-1249.

    Huang Y, Wu J P, Zhang T Z, Zhang D N. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China: Series D, 51(12): 1703-1711.

    罗艳, 倪四道, 曾祥方, 郑勇, 陈棋福, 陈颙. 2010. 汶川地震余震区东北端一个余震序列的地震学研究[J]. 中国科学: 地球科学, 40(6): 677-687.

    Luo Y, Ni S D, Zeng X F, Zheng Y, Chen Q F, Chen Y. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone[J]. Science China : earth Sciences, 53(11): 1655-1664.

    吕坚, 苏金蓉, 靳玉科, 龙锋, 杨雅琼, 张致伟, 汤兰荣, 李超. 2008. 汶川8.0级地震序列重新定位及其发震构造初探[J]. 地震地质, 30(4): 917-925.

    Lü J, Su J R, Jin Y K, Long F, Yang Y Q, Zhang Z W, Tang L R, Li C. 2008. Discussion on relocation and seismo-tectonics of the MS8.0 Wenchuan earthquake sequences[J]. Seismology and Geology, 30(4): 917-925 (in Chinese).

    钱韵衣, 倪四道. 2016. 核幔边界反射震相ScS对远震体波反演震源参数精度影响[J]. 地球物理学报, 59(6): 2014-2027.

    Qian Y Y, Ni S D. 2016. The effects of the core-reflected wave ScS on source parameters in inversion with teleseismic body waves[J]. Chinese Journal of Geophysics, 59(6): 2014-2027 (in Chinese).

    秦刘冰, 陈伟文, 倪四道, 韩立波, 罗艳. 2014. 基于相对质心震中的地震破裂方向性测定方法研究: 以2008年云南盈江MS6.0地震为例[J]. 地球物理学报, 57(10): 3259-3269.

    Qin L B, Chen W W, Ni S D, Han L B, Luo Y. 2014. A method of resolving earthquake rupture directivity with relative centroid location and it’s application to the 2008 Yingjiang MS6.0 earthquake[J]. Chinese Journal of Geophysics, 57(10): 3259-3269 (in Chinese).

    孙建宝, 梁芳, 沈正康, 徐锡伟. 2008. 汶川MS8.0地震InSAR形变观测及初步分析[J]. 地震地质, 30(3): 789-795.

    Sun J B, Liang F, Shen Z K, Xu X W. 2008. InSAR deformation observation and preliminary analysis of the MS8 Wenchuan Earthquake[J]. Seismology and Geology, 30(3): 789-795 (in Chinese).

    王家庆, 张国宏, 单新建, 张迎峰. 2016. 2008年西藏改则地震多视角InSAR成果的三维形变解算及初步分析[J]. 地震地质, 38(4):978-986.

    Wang J Q, Zhang G H, Shan X J, Zhang Y F. 2016. Three-dimensional deformation of the 2008 Gaize earthquakes resolved from InSAR measurements by multiple view angles and its tectonic implications[J]. Seismology and Geology, 38(4):978-986 (in Chinese).

    王德才, 倪四道, 李俊. 2013. 地震烈度快速评估研究现状与分析[J]. 地球物理进展, 28(4): 1772-1784.

    Wang D C, Ni S D, Li J. 2013. Research status of rapid assessment on seismic intensity[J]. Progress in Geophysics, 28(4): 1772-1784 (in Chinese).

    王卫民, 赵连锋, 李娟, 姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 1403-1410.

    Wang W M, Zhao L F, Li J, Yao Z X. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5): 1403-1410 (in Chinese).

    韦生吉. 2009. 稀疏台网震源参数方法研究[D]. 合肥: 中国科学技术大学: 1–152.

    Wei S J. 2009. Constraining Source Parameters with Sparse Network[D]. Hefei: University of Science and Technology of China: 1–152 (in Chinese).

    吴忠良, 臧绍先. 1991. 用体波合成地震图方法确定渤海、永善两大地震的震源参数[J]. 地震学报, 13(1): 1-8.

    Wu Z L, Zang S X. 1991. Source parameters of Bohai earthquake of July 18, 1969 and Yongshan earthquake of May 11, 1974 from synthetic seismogram of body waves[J]. Acta Seismologica Sinica, 13(1): 1-8 (in Chinese).

    张培震, 徐锡伟, 闻学泽, 冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073.

    Zhang P Z, Xu X W, Wen X Z, Ran Y K. 2008. Slip rates and recurrence intervals of the Longmen shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese).

    张勇, 许力生, 陈运泰, 冯万鹏, 杜海林. 2008. 2007年云南宁洱MS6.4地震震源过程[J]. 中国科学: D辑, 38(6): 683-692.

    Zhang Y, Xu L S, Chen Y T, Feng W P, Du H L. 2009. Source process of MS6.4 earthquake in Ning’er, Yunnan in 2007[J]. Science in China: Series D, 52(2): 180-188.

    郑勇, 马宏生, 吕坚, 倪四道, 李迎春, 韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学: 地球科学, 39(4): 413-426.

    Zheng Y, Ma H S, Lü J, Ni S D, Li Y C, Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008-05-12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China: Earth Sciences, 2009, 52(6): 739-753.

    中国地震台网中心. 2008. 中国地震目录[EB/OL]. [2018–02–01]. http://data.earthquake.cn.

    China Earthquake Network Center. 2008. China earthquake catalogue[EB/OL]. [2018–02–01]. http://data.earthquake.cn (in Chinese).

    Aki K, Richards P G. 2002. Quantitative Seismology[M]. 2nd ed. California: University Science Books: 34.

    Chen W W, Ni S D, Kanamori H, Wei S J, Jia Z, Zhu L P. 2015. CAP joint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms[J]. Seismol Res Lett, 86(2A): 432-441.

    Elliott J R, Walters R J, England P C, Jackson J A, Li Z, Parsons B. 2010. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophys J Int, 183(2): 503-535.

    Frohlich C, Davis S D. 1999. How well constrained are well-constrained T, B, and P axes in moment tensor catalogs?[J]. J Geophys Res, 104(B3): 4901-4910.

    GCMT. 2008. Monthly CMT solutions [EB/OL]. [2017–10–22]. http://www.ldeo.columbia.edu/~gcmt/projects/CMT/catalog/NEW_MONTHLY/2008/mar08.ndk.

    Hao K X H, Si H J, Fujiwara T, Ozawa T. 2009. Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake MW7.9, China[J]. Geophys Res Lett, 36(11): L11303.

    Hashimoto M, Enomoto M, Fukushima Y. 2010. Coseismic deformation from the 2008 Wenchuan, China, earthquake derived from ALOS/PALSAR images[J]. Tectonophysics, 491(1/2/3/4): 59-71.

    He X, Ni S. 2017. Rapid rupture directivity determination of moderate dip-slip earthquakes with teleseismic body waves assuming reduced finite source approximation[J]. J Geophys Res, 122(7): 5344-5368.

    He X H, Ni S D, Liu J. 2015. Rupture directivity of the August 3rd, 2014 Ludian earthquake (Yunnan, China)[J]. Science China: Earth Science, 58(5): 795-804.

    Huang M H, Tung H, Fielding E J, Huang H H, Liang C R, Huang C, Hu J C. 2016. Multiple fault slip triggered above the 2016 MW 6.4 Meinong earthquake in Taiwan[J]. Geophys Res Lett, 43(14): 7459-7467.

    IRIS. 2008. Earthquake event waveform data[EB/OL]. [2018–02–01]. http://ds.iris.edu/wilber3/find_event.

    Jia Z, Ni S D, Chu R S, Zhan Z W. 2017. Joint inversion for earthquake depths using local waveforms and amplitude spectra of Rayleigh waves[J]. Pure Appl Geophys, 174(1): 261-277.

    Kikuchi M, Kanamori H. 1991. Inversion of complex body waves: III[J]. Bull Seismol Soc Am, 81(6): 2335-2350.

    Langston C A. 1980. A note on spectral nulls in Rayleigh waves[J]. Bull Seismol Soc Am, 70(4): 1409-1414.

    Li Z H, Elliott J R, Feng W P, Jackson J A, Parsons B E, Walters R J. 2011. The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology[J]. J Geophys Res, 116(B10): B10302.

    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am, 75(4): 1135-1154.

    Qian Y Y, Ni S D, Wei S J, Almeida R, Zhang H. 2017. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data[J]. Geophys J Int, 211(2): 936-951.

    Shen Z K, Sun J B, Zhang P Z, Wan Y G, Wang M, Bürgmann R, Zeng Y H, Gan W J, Liao H, Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nat Geosci, 2(10): 718-724.

    Stein S, Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes: Methods and results[J]. Rev Geophys, 24(4): 806-832.

    Tsai Y B, Aki K. 1970. Precise focal depth determination from amplitude spectra of surface waves[J]. J Geophys Res, 75(29): 5729-5744.

    Tong X P, Sandwell D T, Fialko Y. 2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data[J]. J Geophys Res, 115(B4): B04314. doi: 10.1029/2009JB006625.

    Wang R J, Martıń F L, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust: FORTRAN programs EDGRN/EDCMP[J]. Comput Geosci, 29(2): 195-207.

    Zhan Z W, Helmberger D, Simons M, Kanamori H, Wu W B, Cubas N, Duputel Z, Chu R S, Tsai V C, Avouac J P, Hudnut K W, Ni S D, Hetland E, Culaciati F H O. 2012. Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations[J]. Earth Planet Sci Lett, 353/354: 121-133.

    Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am, 84(1): 91-104.

  • 期刊类型引用(4)

    1. 陈长龙,刘启方. 三种非线性时变识别方法的对比研究——以2021年日本福岛地震为例. 地震工程学报. 2023(02): 372-381 . 百度学术
    2. 吴双兰,野津厚,長坂陽介. 2021年日本福岛县冲地震的震源破裂过程分析——基于采用经验格林函数方法的波形反演. 世界地震工程. 2021(02): 1-12 . 百度学术
    3. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 . 百度学术
    4. 张喆,许力生. 2021年青海玛多M_W7.5地震矩心矩张量解. 地震学报. 2021(03): 387-391 . 本站查看

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  2321
  • HTML全文浏览量:  1273
  • PDF下载量:  130
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-01-21
  • 修回日期:  2018-03-21
  • 网络出版日期:  2018-04-20
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回