Are there links between the localized deformation in the northeastern section of Wenchuan earthquake source zone and the May 25,2008 Qingchuan strong aftershock?
-
摘要: 2008年汶川地震之后,通过InSAR观测到青川县木鱼镇附近存在一个长约为15 km、宽约为10 km、地表位移数十厘米的局部形变区。前人分析认为,该形变区是由MS6.4的青川强余震造成的,但拟合地表形变数据所采用的震源深度和震源机制解与地震学反演的结果具有较大差异。本文利用远震体波和瑞雷波振幅谱进一步测定了青川强余震的震源深度和震源机制解,计算了此次事件造成的地表位移场,认为青川强余震并非造成木鱼镇地区局部形变的直接原因,并讨论该局部形变区可能的成因。Abstract: A localized deformation zone near Muyu town of Qingchuan county was observed on the InSAR interferograms of the great 2008 Wenchuan earthquake. The Muyu deformation zone was about 15 km long and 10 km wide, with line of sight displacement up to dozens of centimeters. Some researchers proposed that the deformation zone is caused by a strong aftershock (MW6.1) in Qingchuan county on May 25, 2008, and they adopted seismic source parameters very different from seismic inversions. To verify reliability of the seismic source inversions, we use teleseismic body wave and local Rayleigh wave spectra to constrain focal depth and fault plane of the strong aftershock. Thereafter, we compute ground displacement and proposed that the aftershock was not the direct cause of the localized deformation zone. Then we discuss some candidate mechanisms which might explain the localized deformation.
-
Keywords:
- focal depth /
- source mechanism /
- ground deformation /
- InSAR
-
-
图 1 汶川地震震源区东北端InSAR位移场及余震分布(修改自Hashimoto et al,2009 )
Figure 1. Deformation observed by InSAR and after-shocks (circles) in the northeastern section of Wenchuan earthquake source zone(modified from Hashimoto et al, 2009 )
图 3 青川强余震震源机制解及CAPtel反演后的远震体波观测波形(黑色)与理论波形(红色)对比图
台网及台站代号标记在波形左侧上方,台站下方分别为震中距/方位角,波形下方的两行数字分别为波形对齐所需的时移 (上行)和相关系数百分值 (下行)
Figure 3. Comparison between observed (black) and synthetic (red) seismograms after the CAPtel inversion of the Qingchuan strong aftershock.
Seismic network and stations are labeled to the left of the traces,while epicentral distance and azimuth are displayed below the station code,time shift (above) and percentile of cross correlation coefficient (below) are displayed under the waveforms
表 1 汶川强余震目录
Table 1 Catalog of strong aftershocks of the Wenchuan earthquake
序号 发震时刻 (UTC) 震中位置 震源
深度/kmMS MS7 mL mb mB MW 年-月-日 时:分:秒 东经/° 北纬/° 1 2008-05-12 06:43:14 103.82 31.27 14 6.3 5.9 5.7 6.2 6.3 2 2008-05-12 06:54:16 103.59 31.26 13 5.8 5.8 5.3 5.8 6.2 3 2008-05-12 11:11:01 103.67 31.26 14 6.3 6.2 5.8 5.8 6.2 6.1 4 2008-05-13 07:07:08 103.42 30.95 14 6.1 5.9 5.7 5.6 6.0 5 2008-05-17 17:08:24 105.08 32.20 13 6.1 5.9 5.9 5.5 6.1 6 2008-05-25 08:21:47 105.48 32.55 14 6.4 6.2 6.3 5.7 6.1 6.1 7 2008-07-24 07:09:27 105.61 32.76 10 6.0 5.6 5.7 5.7 5.7 8 2008-08-01 08:32:41 104.85 32.02 14 6.2 6.0 5.9 5.6 6.1 9 2008-08-05 09:49:15 105.61 32.72 13 6.5 6.3 6.0 5.8 6.3 6.0 注:表中序号为3,6,9的数据来自GCMT (2008),其余来自中国地震台网中心 (2008)。 表 2 2008年5月25日青川MW6.1余震震源参数对比
Table 2 The source parameters of the May 25,2008 MW6.1 Qinchuan aftershock from various authors or agencies
数据来源 震中位置 深度/km 节面Ⅰ 节面Ⅱ 东经/° 北纬/° 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2008) 105.45 32.57 27 59 84 178 149 88 6 郑勇等 (2009) 105.39 32.62 18 63 64 −171 329 82 −26 郭祥云等 (2010) 251 74 170 344 80 16 吕坚等 (2008) 105.37 32.62 19* 中国地震台网中心 (2008) 105.48 32.55 14* 注:深度为质心深度,标*为破裂起始深度。 表 3 理论地震图及地表形变使用的速度结构模型
Table 3 Crustal structure used in this study
底部深度/km vP/(km·s−1) vS/(km·s−1) 密度/(103 kg·m−3) 1 2.50 1.00 1.20 2 4.00 2.10 2.40 22 6.10 3.50 2.75 42 6.30 3.60 2.80 46 7.20 4.00 3.10 ∞ 8.00 4.47 3.35 -
郭祥云, 陈学忠, 李艳娥. 2010. 2008年5月12日四川汶川8.0级地震与部分余震的震源机制解[J]. 地震, 30(1): 50-60. Guo X Y, Chen X Z, Li Y E. 2010. Focal mechanism solutions for the 2008 MS8.0 Wenchuan earthquake and part of its aftershocks[J]. Earthquake, 30(1): 50-60 (in Chinese).
黄媛, 吴建平, 张天中, 张东宁. 2008. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学: D辑, 38(10): 1242-1249. Huang Y, Wu J P, Zhang T Z, Zhang D N. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China: Series D, 51(12): 1703-1711.
罗艳, 倪四道, 曾祥方, 郑勇, 陈棋福, 陈颙. 2010. 汶川地震余震区东北端一个余震序列的地震学研究[J]. 中国科学: 地球科学, 40(6): 677-687. Luo Y, Ni S D, Zeng X F, Zheng Y, Chen Q F, Chen Y. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone[J]. Science China : earth Sciences, 53(11): 1655-1664.
吕坚, 苏金蓉, 靳玉科, 龙锋, 杨雅琼, 张致伟, 汤兰荣, 李超. 2008. 汶川8.0级地震序列重新定位及其发震构造初探[J]. 地震地质, 30(4): 917-925. Lü J, Su J R, Jin Y K, Long F, Yang Y Q, Zhang Z W, Tang L R, Li C. 2008. Discussion on relocation and seismo-tectonics of the MS8.0 Wenchuan earthquake sequences[J]. Seismology and Geology, 30(4): 917-925 (in Chinese).
钱韵衣, 倪四道. 2016. 核幔边界反射震相ScS对远震体波反演震源参数精度影响[J]. 地球物理学报, 59(6): 2014-2027. Qian Y Y, Ni S D. 2016. The effects of the core-reflected wave ScS on source parameters in inversion with teleseismic body waves[J]. Chinese Journal of Geophysics, 59(6): 2014-2027 (in Chinese).
秦刘冰, 陈伟文, 倪四道, 韩立波, 罗艳. 2014. 基于相对质心震中的地震破裂方向性测定方法研究: 以2008年云南盈江MS6.0地震为例[J]. 地球物理学报, 57(10): 3259-3269. Qin L B, Chen W W, Ni S D, Han L B, Luo Y. 2014. A method of resolving earthquake rupture directivity with relative centroid location and it’s application to the 2008 Yingjiang MS6.0 earthquake[J]. Chinese Journal of Geophysics, 57(10): 3259-3269 (in Chinese).
孙建宝, 梁芳, 沈正康, 徐锡伟. 2008. 汶川MS8.0地震InSAR形变观测及初步分析[J]. 地震地质, 30(3): 789-795. Sun J B, Liang F, Shen Z K, Xu X W. 2008. InSAR deformation observation and preliminary analysis of the MS8 Wenchuan Earthquake[J]. Seismology and Geology, 30(3): 789-795 (in Chinese).
王家庆, 张国宏, 单新建, 张迎峰. 2016. 2008年西藏改则地震多视角InSAR成果的三维形变解算及初步分析[J]. 地震地质, 38(4):978-986. Wang J Q, Zhang G H, Shan X J, Zhang Y F. 2016. Three-dimensional deformation of the 2008 Gaize earthquakes resolved from InSAR measurements by multiple view angles and its tectonic implications[J]. Seismology and Geology, 38(4):978-986 (in Chinese).
王德才, 倪四道, 李俊. 2013. 地震烈度快速评估研究现状与分析[J]. 地球物理进展, 28(4): 1772-1784. Wang D C, Ni S D, Li J. 2013. Research status of rapid assessment on seismic intensity[J]. Progress in Geophysics, 28(4): 1772-1784 (in Chinese).
王卫民, 赵连锋, 李娟, 姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 1403-1410. Wang W M, Zhao L F, Li J, Yao Z X. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5): 1403-1410 (in Chinese).
韦生吉. 2009. 稀疏台网震源参数方法研究[D]. 合肥: 中国科学技术大学: 1–152. Wei S J. 2009. Constraining Source Parameters with Sparse Network[D]. Hefei: University of Science and Technology of China: 1–152 (in Chinese).
吴忠良, 臧绍先. 1991. 用体波合成地震图方法确定渤海、永善两大地震的震源参数[J]. 地震学报, 13(1): 1-8. Wu Z L, Zang S X. 1991. Source parameters of Bohai earthquake of July 18, 1969 and Yongshan earthquake of May 11, 1974 from synthetic seismogram of body waves[J]. Acta Seismologica Sinica, 13(1): 1-8 (in Chinese).
张培震, 徐锡伟, 闻学泽, 冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073. Zhang P Z, Xu X W, Wen X Z, Ran Y K. 2008. Slip rates and recurrence intervals of the Longmen shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese).
张勇, 许力生, 陈运泰, 冯万鹏, 杜海林. 2008. 2007年云南宁洱MS6.4地震震源过程[J]. 中国科学: D辑, 38(6): 683-692. Zhang Y, Xu L S, Chen Y T, Feng W P, Du H L. 2009. Source process of MS6.4 earthquake in Ning’er, Yunnan in 2007[J]. Science in China: Series D, 52(2): 180-188.
郑勇, 马宏生, 吕坚, 倪四道, 李迎春, 韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学: 地球科学, 39(4): 413-426. Zheng Y, Ma H S, Lü J, Ni S D, Li Y C, Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008-05-12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China: Earth Sciences, 2009, 52(6): 739-753.
中国地震台网中心. 2008. 中国地震目录[EB/OL]. [2018–02–01]. http://data.earthquake.cn. China Earthquake Network Center. 2008. China earthquake catalogue[EB/OL]. [2018–02–01]. http://data.earthquake.cn (in Chinese).
Aki K, Richards P G. 2002. Quantitative Seismology[M]. 2nd ed. California: University Science Books: 34.
Chen W W, Ni S D, Kanamori H, Wei S J, Jia Z, Zhu L P. 2015. CAP joint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms[J]. Seismol Res Lett, 86(2A): 432-441.
Elliott J R, Walters R J, England P C, Jackson J A, Li Z, Parsons B. 2010. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophys J Int, 183(2): 503-535.
Frohlich C, Davis S D. 1999. How well constrained are well-constrained T, B, and P axes in moment tensor catalogs?[J]. J Geophys Res, 104(B3): 4901-4910.
GCMT. 2008. Monthly CMT solutions [EB/OL]. [2017–10–22]. http://www.ldeo.columbia.edu/~gcmt/projects/CMT/catalog/NEW_MONTHLY/2008/mar08.ndk.
Hao K X H, Si H J, Fujiwara T, Ozawa T. 2009. Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake MW7.9, China[J]. Geophys Res Lett, 36(11): L11303.
Hashimoto M, Enomoto M, Fukushima Y. 2010. Coseismic deformation from the 2008 Wenchuan, China, earthquake derived from ALOS/PALSAR images[J]. Tectonophysics, 491(1/2/3/4): 59-71.
He X, Ni S. 2017. Rapid rupture directivity determination of moderate dip-slip earthquakes with teleseismic body waves assuming reduced finite source approximation[J]. J Geophys Res, 122(7): 5344-5368.
He X H, Ni S D, Liu J. 2015. Rupture directivity of the August 3rd, 2014 Ludian earthquake (Yunnan, China)[J]. Science China: Earth Science, 58(5): 795-804.
Huang M H, Tung H, Fielding E J, Huang H H, Liang C R, Huang C, Hu J C. 2016. Multiple fault slip triggered above the 2016 MW 6.4 Meinong earthquake in Taiwan[J]. Geophys Res Lett, 43(14): 7459-7467.
IRIS. 2008. Earthquake event waveform data[EB/OL]. [2018–02–01]. http://ds.iris.edu/wilber3/find_event.
Jia Z, Ni S D, Chu R S, Zhan Z W. 2017. Joint inversion for earthquake depths using local waveforms and amplitude spectra of Rayleigh waves[J]. Pure Appl Geophys, 174(1): 261-277.
Kikuchi M, Kanamori H. 1991. Inversion of complex body waves: III[J]. Bull Seismol Soc Am, 81(6): 2335-2350.
Langston C A. 1980. A note on spectral nulls in Rayleigh waves[J]. Bull Seismol Soc Am, 70(4): 1409-1414.
Li Z H, Elliott J R, Feng W P, Jackson J A, Parsons B E, Walters R J. 2011. The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology[J]. J Geophys Res, 116(B10): B10302.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am, 75(4): 1135-1154.
Qian Y Y, Ni S D, Wei S J, Almeida R, Zhang H. 2017. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data[J]. Geophys J Int, 211(2): 936-951.
Shen Z K, Sun J B, Zhang P Z, Wan Y G, Wang M, Bürgmann R, Zeng Y H, Gan W J, Liao H, Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nat Geosci, 2(10): 718-724.
Stein S, Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes: Methods and results[J]. Rev Geophys, 24(4): 806-832.
Tsai Y B, Aki K. 1970. Precise focal depth determination from amplitude spectra of surface waves[J]. J Geophys Res, 75(29): 5729-5744.
Tong X P, Sandwell D T, Fialko Y. 2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data[J]. J Geophys Res, 115(B4): B04314. doi: 10.1029/2009JB006625.
Wang R J, Martıń F L, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust: FORTRAN programs EDGRN/EDCMP[J]. Comput Geosci, 29(2): 195-207.
Zhan Z W, Helmberger D, Simons M, Kanamori H, Wu W B, Cubas N, Duputel Z, Chu R S, Tsai V C, Avouac J P, Hudnut K W, Ni S D, Hetland E, Culaciati F H O. 2012. Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations[J]. Earth Planet Sci Lett, 353/354: 121-133.
Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am, 84(1): 91-104.