Velocity structures and aftershock distribution in the source region of the 2017 Jiuzhaigou MS7.0 earthquake
-
摘要: 采用九寨沟MS7.0 (MW6.5)地震的余震直达P波、S波走时数据,通过体波走时层析成像方法,获得了震源区及其邻区的P波和S波速度结构,并利用成像结果对余震进行了重定位。结果显示:余震主要集中分布于高、低速异常交界处偏低速异常一侧,呈走向NNW,倾向SW,倾角较高的分布特征;余震序列两侧的P波、S波速度结构揭示了发震断层两侧介质性质的差异,即上盘为刚性较强的高地震波速度区,下盘为刚性较弱的低地震波速度区。由余震分布特征和地震波速度结构推断:九寨沟地震发生在上地壳底部,发震断层具有上盘地震波速度高、下盘地震波速度低的特征;主震引起的后续破裂在上地壳内部的剧烈形变区内传播,破裂能量终止于25 km深度附近。Abstract: Using the arrival times from the aftershocks of 2017 Jiuzhaigou MS7.0 (MW6.5) earthquake, the P- and S-wave velocity structures in the source region and its adjacent area are obtained by means of the body wave tomography method. The results show that the aftershocks, characterized by NNW-striking, SW-trending and a high dip angle, are mainly concentrated on one side of the low-velocity anomalies at the intersection of high- and low-velocity anomalies. The P- and S-wave velocity structures reveal the differences of crustal property on both sides of the seismogenic fault: the hanging-wall is a high-velocity zone with strong rigidity while the footwall is a low-velocity zone with weak rigidity. According to the distribution of aftershocks and the seismic velocity structure, it can be inferred ultimately that the 2017 Jiu-zhaigou MS7.0 earthquake occurred on the lower interface of the upper crust, following with the rupture propagated in a dramatically deformed area in the upper crust and terminated near the depth of 25 km, and the seismogenic fault has the property of low-velocity hanging-wall and high-velocity footwall.
-
Keywords:
- Jiuzhaigou earthquake /
- tomography /
- aftershocks relocation /
- seismic velocity
-
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021年2月13日14时7分50秒(UTC),日本本州以东发生了一次矩震级高达MW7.2的地震,震中位于(37.745°N,141.749°E),震源深度为49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)随后发布了这次地震的矩心矩张量解(表1)。震后48小时内累计发生M>2.5余震13次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间。该事件所在区域曾于2011年3月11日发生过MW9.1特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域。
表 1 GCMT,USGS 和本研究所得日本本州东海岸MW7.2地震矩心矩张量解Table 1. The centroid moment tensor solutions for the MW7.2 earthquake in the east coast of Honshu,Janpan,from GCMT,USGS and this study机构 矩张量/(1019 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 矩心深度/km GCMT (2021) 5.540 −0.647 −4.890 0.269 −1.760 −1.740 9.6 37.60 141.63 50.7 USGS (2021)(W震相) 4.557 −0.220 −4.337 0.724 −0.773 −1.550 13.2 37.63 141.88 60.5 USGS (2021)(体波) 5.964 −1.531 −4.434 0.313 −2.151 −1.156 − 37.75 141.72 50.6 本文 8.588 −0.147 −8.440 −0.217 −2.755 −1.000 12.0 37.65 141.45 50.0 基于对该事件震级、噪声水平及空间分辨率的综合考虑,我们收集了震中距处于34.53°—89.92°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字地震台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN) 61个台站的宽频带垂直分量数据作为观测资料,采用AK135模型计算格林函数(Wang,1999)并截取P波数据,根据震级将滤波频带设定为0.01—0.05 Hz。与Kanamori和Rivera (2008)、Duputel等(2012b)以及先前的研究(张喆等,2020)相同,本文采用网格搜索的方法对矩心时空信息进行非线性反演,结果如图1所示。反演结果显示,矩心时间为12 s,矩心水平坐标为(37.65°N,141.45°E),矩心深度为50 km,其中双力偶成分占比接近100%。根据矩心矩张量解(表1,图2),我们也得到了相应的最佳双力偶解(表2)。图3展示了利用反演结果计算的合成波形与观测波形的比较,二者的整体相关系数达到0.93,二次误差为5.785×10−8,大多数台站的相关系数在0.90以上。
图 1 日本本州东海岸MW7.2地震矩心矩张量解反演过程(a) 矩心时间τc搜索;(b) 矩心水平空间搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc搜索;(d) 矩心相对震中的位置,红色沙滩球表示矩心矩张量解,红色星形表示震中Figure 1. Inversion process of the centroid moment tensor solution for the MW7.2 earthquake in the east coast of Honshu,Japan(a) Search for centroid time τc;(b) Search for the horizontal location of the centroid (yellow circle);(c) Search for centroid depth hc; (d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)表 2 GCMT,USGS以及本研究得到的日本本州东海岸MW7.2地震的最佳双力偶解Table 2. The best double-couple solutions for the MW7.2 earthquake in the east coast of Honshu,Japan,from USGS,GCMT and this study机构 标量地震矩
/(1019 N·m)双力偶
成分占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2021) 5.800 99% 192 53 80 28 38 103 USGS (2021)(W震相) 4.831 96% 187 49 74 30 43 107 USGS (2021)(体波) 5.903 61% 191 55 82 25 35 102 本文 9.008 100% 186 54 89 7 36 91 与USGS和GCMT的结果(图4)相比,本文反演所得矩心时间12 s介于二者之间,而矩心位置(37.65°N,141.45°E,深度50 km)要更偏向西侧。本文反演得到的标量地震矩达到9.008×1019 N·m,换算为矩震级约MW7.24,高于其它机构(约MW7.1)的结果。此外,本文反演得到矩张量解中双力偶成分占比接近100%,这个数值要略高于GCMT和USGS (W震相)的结果,明显高于USGS (体波)发布的结果。从最佳双力偶解所确定的断层面来看,本研究的走向和倾角与其它研究结果近似,滑动角上存在接近10°的差异。经反复测试我们认为滑动角、矩心位置与其它研究结果的差异与观测资料、滤波频带的不同以及参考震中(Preliminary Determination Epicenter,缩写为PDE)的变更相关。从本文反演得到的震源机制解来看这是一次纯逆冲事件。
图 4 2011年MW9.1地震(灰色沙滩球)后M>2.5事件以及本州东海岸MW7.2地震的余震分布和各机构发布的该主震的矩心矩张量反演结果Figure 4. The centroid moment tensor solutions (colored beach-balls) from various institutions and aftershocks of the MW7.2 earthquake in east coast of Honshu as well as the M>2.5 earthquakes since the 2011 MW9.1 earthquake (gray beach-ball)本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自于全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!
-
-
陈长云,任金卫,孟国杰,杨攀新,熊仁伟,胡朝忠,苏小宁,苏建峰. 2013. 巴颜喀拉块体东部活动块体的划分、形变特征及构造意义[J]. 地球物理学报,56(12):4125–4141 doi: 10.6038/cjg20131217 Chen C Y,Ren J W,Meng G J,Yang P X,Xiong R W,Hu C Z,Su X N,Su J F. 2013. Division,deformation and tectonic implication of active blocks in the eastern segment of Bayan Harblock[J]. Chinese Journal of Geophysics,56(12):4125–4141 (in Chinese)
邓起东,陈社发,赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,16(4):389–403 Deng Q D,Chen S F,Zhao X L. 1994. Tectonics,seismicity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology,16(4):389–403 (in Chinese)
杜方,闻学泽,张培震,王庆良. 2009. 2008年汶川8.0级地震前横跨龙门山断裂带的震间形变[J]. 地球物理学报,52(11):2729–2738 Du F,Wen X Z,Zhang P Z,Wang Q L. 2009. Interseismic deformation across the Longmenshan fault zone before the 2008 M8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(11):2729–2738 (in Chinese)
范文渊,陈永顺,唐有彩,周仕勇,冯永革,岳汉,王海洋,金戈,魏松峤,王彦宾,盖增喜,宁杰远. 2015. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报,58(5):1568–1583 Fan W Y,Chen Y S,Tang Y C,Zhou S Y,Feng Y G,Yue H,Wang H Y,Jing G,Wei S Q,Wang Y B,Ge Z X,Ning J Y. 2015. Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics,58(5):1568–1583 (in Chinese)
江晓涛,朱介寿,王宇航,杨正刚,杜兴忠. 2013. 青藏高原东缘S波速度结构及其意义[J]. 地震工程学报,35(4):885–892 doi: 10.3969/j.issn.1000-0844.2013.04.885 Jiang X T,Zhu J S,Wang Y H,Yang Z G,Du X Z. 2013. S-wave velocity structure of the eastern margin of the Tibetan Pla-teau[J]. China Earthquake Engineering Journal,35(4):885–892 (in Chinese)
李敏娟,沈旭章,张元生,刘旭宇,梅秀苹. 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报,61(5):2075–2087 Li M J,Shen X Z,Zhang Y S,Liu X Y,Mei X P. 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics,61(5):2075–2087 (in Chinese)
楼海,王椿镛,姚志祥,李红谊,苏伟,吕智勇. 2010. 龙门山断裂带深部构造和物性分布的分段特征[J]. 地学前缘,17(5):128–141 Lou H,Wang C Y,Yao Z X,Li H Y,Su W,Lü Z Y. 2010. Subsection feature of the deep structure and material properties of Longmenshan fault zone[J]. Earth Science Frontiers,17(5):128–141 (in Chinese)
王椿镛,Mooney W D,王溪莉,吴建平,楼海,王飞. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报,24(1):1–16 doi: 10.3321/j.issn:0253-3782.2002.01.001 Wang C Y,Mooney W D,Wang X L,Wu J P,Lou H,Wang F. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region,China[J]. Acta Seismology Sinica,24(1):1–16 (in Chinese)
吴建平,黄媛,张天中,明跃红,房利华. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报,52(2):320–328 Wu J P,Huang Y,Zhang T Z,Ming Y H,Fang L H. 2009. Aftershocks distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics,52(2):320–328 (in Chinese)
易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097 doi: 10.6038/cjg20171033 Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese)
赵小麟,邓起东,陈社发. 1994. 岷山隆起的构造地貌学研究[J]. 地震地质,16(4):429–439 Zhao X L,Deng Q D,Chen S F. 1994. Tectonic geomorphology of the Minshan uplift in western Sichuan,southwestern China[J]. Seismology and Geology,16(4):429–439
周荣军,李勇,Alexander L D,Michael A E,何玉林,王凤林,黎小刚. 2006. 青藏高原东缘活动构造[J]. 矿物岩石,26(2):40–51 doi: 10.3969/j.issn.1001-6872.2006.02.007 Zhou R J,Li Y,Alexander L D,Michael A E,He Y L,Wang F L,Li X G. 2006. Active tectonics of the eastern margin of the Tibet Plateau[J]. Journal of Mineralogy and Petrology,26(2):40–51 (in Chinese)
Ellsworth W L,Koyanagi R Y. 1977. Three-dimensional crust and mantle structure of Kilauea Volcano,Hawaii[J]. J Geophys Res,82(33):5379–5394 doi: 10.1029/JB082i033p05379
Kissling E,Ellsworth W L,Eberhart-Phillips D,Kradolfer U. 1994. Initial reference models in local earthquake tomography[J]. J Geophys Res,99(B10):19635–19646 doi: 10.1029/93JB03138
Kissling E, Kradolfer U, Maurer H. 1995. Program VELEST User’s Guide-Short Introduction[R]. ETH Zurich: Institute of Geophysics: 1–26.
Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0-A 1-degree global model of Earth's Crust[C]//EGU General Assembly 2013. Vienna, Austria: European Geosciences Union: 2658.
Spakman W,van Der Lee S,van Der Hilst R. 1993. Travel-time tomography of the European-Mediterranean mantle down to 1 400 km[J]. Phys Earth Planet In,79(1/2):3–74
Thurber C H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area,central California[J]. J Geophys Res,88(B10):8226–8236 doi: 10.1029/JB088iB10p08226
Thurber C H. 1992. Hypocenter-velocity structure coupling in local earthquake tomography[J]. Phys Earth Planet In,75(1/2/3):55–62
Thurber C H,Roecker S,Ellsworth W,Chen Y,Lutter W,Sessions R. 1997. Two-Dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range,central California:Evidence for fluids in the fault zone[J]. Geophys Res Lett,24(13):1591–1594 doi: 10.1029/97GL01435
-
期刊类型引用(4)
1. 陈长龙,刘启方. 三种非线性时变识别方法的对比研究——以2021年日本福岛地震为例. 地震工程学报. 2023(02): 372-381 . 百度学术
2. 吴双兰,野津厚,長坂陽介. 2021年日本福岛县冲地震的震源破裂过程分析——基于采用经验格林函数方法的波形反演. 世界地震工程. 2021(02): 1-12 . 百度学术
3. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 . 百度学术
4. 张喆,许力生. 2021年青海玛多M_W7.5地震矩心矩张量解. 地震学报. 2021(03): 387-391 . 本站查看
其他类型引用(1)