Characteristics of seismogenic faults and stress fields of the Songyuan MS5.7 earthquake sequence in May 2018
-
摘要: 利用双差定位方法对2018年松原MS5.7地震序列中ML≥1.0地震重新定位,之后使用CAP方法求解松原MS5.7地震序列中强地震的震源机制解,再借助MSATSI软件包反演得到松原地区的区域应力场。综合分析以上研究结果得到如下结论:① 松原MS5.7地震序列发生在NW走向的第二松花江断裂与NE走向的扶余—肇东断裂交会处,将地震精定位结果沿两条断层走向作剖面分析,NW向剖面主轴长度约为5 km,震中分布均匀,NE向剖面主轴长度亦约为5 km,震中呈倾向NE的高倾角分布;② 该序列中的4次ML≥3.7地震的震源机制解具有良好的一致性:节面Ⅰ走向为NE向,节面Ⅱ走向为NW向,均为高倾角走滑断层。中强地震的震源机制节面解与第二松花江断裂性质基本一致,由此推断第二松花江断裂是本次松原地震的发震断层;③ 松原地区的主压应力方位角为N86°E,倾角为7°,主张应力方位角为N24°E,倾角为71°。松原地区的区域应力场既受到大尺度的板块构造运动的控制,又受到区域构造运动的影响。在太平洋板块对北东亚板块向西俯冲作用下,东北地区产生了近EW向的主压应力,受周边地质构造控制,松辽盆地内NE向断裂与NW向断裂交会处易发生走滑型地震,2018年松原MS5.7地震正是在这种构造作用控制下发生的中强地震。Abstract: In recent years, moderate-strong earthquakes in Songyuan area of Jilin Province are active. Studying the fault structure and stress field characteristics of the earthquake sequence in Songyuan area is of great significance for scientific understanding of the earthquake-preserving environment in Northeast China and earthquake prevention. The ML≥1.0 earthquakes are relocated by the method of double difference relocation, the focal mechanism solutions of the strong earthquakes are determined by the CAP method, and the stress field is determined by the FMSI method.According to the results, we realize that: ① The Songyuan MS5.7 earthquake sequence occurred at the intersection of the Second Songhuajiang fault trending NW and Fuyu-Zhaodong fault trending NE. The results of earthquakes relocation are analyzed along the two faults. The length of the NW axis is about 5 km, the same as to NE axis. The epicenters on the profile of NW axis have a high inclination distribution, while the NE axis is uniform. ② The focal mechanism solutions of four ML≥3.7 earthquakes are all of strike-slip type with high dip angles and good consistency: The strike of nodal plane Ⅰ is NE, and the other is NW. The focal mechanisms of the moderate-strong earthquakes are basically consistent with the Second Songhuajiang fault, and it is concluded that the Second Songhuajiang fault is the seismogenic fault of the Songyuan MS5.7 earthquake; ③ The principal compressive stress azimuth and the inclination angle of Songyuan area are N86°E and 7°, respectively, and the principal tensile stress azimuth and the inclination angle are N24°E and 71°, respectively. The regional stress field in Songyuan area is controlled by both large-scale plate tectonic movement and regional tectonic movement. Under the westward subduction of the Pacific Plate, the Northeast Asia Plate’s principal compressive stress near the EW direction is generated, which is controlled by the surrounding geological structure. The strike-slip type earthquake is prone to occur at the intersection of the NE-trending fault and the NW-trending fault in the Songliao basin, while the 2018 Songyuan MS5.7 earthquake is a moderate-strong earthquake that occurred under the control of such tectonic action.
-
-
图 1 松辽盆地地质构造及台站分布图
F1:讷谟尔河断裂;F2:富裕—明水断裂;F3:嫩江断裂;F4:海伦—任民断裂;F5:呼兰河断裂;F6:滨州断裂;F7:扶余—肇东断裂:F8:依兰—伊通断裂;F9:第二松花江断裂;F10:赤峰—开原断裂
Figure 1. Geological structure and station distribution of Songliao basin
F1:Nemor He fault;F2:Fuyu-Mingshui fault;F3:Nenjiang fault;F4:Helen-Renmin fault;F5:Hulanhe fault;F6:Binzhou fault;F7:Fuyu-Zhaodong fault;F8:Yilan-Yitong fault;F9:The Second Songhuajiang fault;F10:Chifeng-Kaiyuan fault
图 3 双差定位后松原MS5.7地震序列的震中分布及深度剖面图
(a) 震中位置平面分布图;(b) A1A2轴剖面图;(c) B1B2轴剖面图
Figure 3. Epicentral distribution and depth profile after double-difference relocation of Songyuan MS5.7 earthquake sequence
(a) A planer distribution map of the epicenters;(b) A profile view of the A1A2 axis;(c) A profile view of the B1B2 axis
图 4 2018年5月28日松原MS5.7主震震源机制解的CAP反演示例
(a) 13个台站的波形拟合数据,其中黑色曲线为观测波形,红色为理论波形,拟合波段左侧是台站名称,台站名称下方数字是震中距,拟合波段下方第一行数字表示观测波形相对于理论波形的相对移动时间,单位为s,第二行表示观测波形与理论波形的互相关系数;(b) 不同深度下的数据残差e (
${{{e}} {\text{=}} ||{\left( {{{r}}/{{{{r}_0}}}} \right)^p}\left| {\left| \cdot \right|\left| {{u} {\text{-}} {s}} \right|} \right|}$ ,式中r0为参考震中距,r为震中距,u为观测波形,s为理论波形,p为距离补偿因子);(c) 台站分布及震中位置Figure 4. Example of the focal mechanism solution determined by CAP for the Songyuan MS5.7 main shock on May 28,2018
(a) Comparisons of synthetic waveforms (red) and waveforms record (black) at 13 stations. The two numbers under each segment are the time shift in seconds (upper) between the synthetic and record (positive means a delayed record) and the waveform correlation coefficient,epicenter distances is given next to the station codes;(b) The data variance e in diffe-rent depths (
${{{e}} {\text{=}} ||{\left( {{{r}}/{{{{r}_0}}}} \right)^p}\left| {\left| \cdot \right|\left| {{u} {\text{-}} {s}} \right|} \right|}$ ,where r0 is reference epicentral distance,r is epicentral distance,u is the observed waveform,s is the theoretical waveform and p is a scaling factor to give the record at r the same weight as that at reference distance r0);(c) The locations of the event and the corresponding stations used to determine the focal mechanism solution表 1 选用三种速度模型计算出的地震序列主震CAP结果对比
Table 1 Comparison of the CAP results of main shock calculated by three velocity models
速度模型 走向/° 倾角/° 滑动角/° MW 深度/km Crust1.0 (Pasyanos et al,2014) 218 77 164 5.11 6 吴微微等 (2014) 220 79 162 5.10 6 Guo等 (2015) 221 81 163 5.09 6 表 2 2018年松原MS5.7地震序列震源机制解
Table 2 Focal mechanism solutions of Songyuan MS5.7 earthquake sequence in 2018
发震日期 东经
/°北纬
/°矩心深
度/kmM 节面Ⅰ(NW向) 节面Ⅱ(NE向) P轴 T轴 年−月−日 时:分:秒 走向
/°倾角
/°滑动角
/°走向
/°倾角
/°滑动角
/°方位角
/°仰角
/°方位角
/°仰角
/°2018−05−28 01:50:52 124.69 44.310 6 MS5.7 314 72 12 220 79 162 268 5 176 20 2018−05−29 14:36:13 124.73 44.234 7 ML4.0 310 65 0 220 90 155 268 17 172 17 2018−05−31 13:00:42 124.71 44.231 7 ML4.1 310 74 0 220 90 164 266 11 174 11 2018−05−31 17:19:28 124.73 44.232 5 ML3.7 129 79 19 35 71 168 261 5 353 21 表 3 2013年松原M5地震震群的震源机制解(吴微微等,2014)
Table 3 Focal mechanism solutions of Songyuan M5 earthquake swarm in 2013 (after Wu et al,2014)
发震日期 东经/° 北纬/° 矩心深度
/kmM 节面Ⅰ(NW向) 节面Ⅱ(NE向) 年−月−日 时:分:秒 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° 2013−10−31 11:03:32 124.089 44.678 14 MS5.5 334 39 38 211 121 67 2013−10−31 11:10:05 124.085 44.689 9 MS5.0 305 19 65 207 154 73 2013−11−03 12:26:52 124.111 44.685 11 ML4.6 329 34 58 220 143 61 2013−11−08 19:37:19 124.128 44.681 13 ML4.9 310 49 59 190 137 50 2013−11−22 16:18:49 124.114 44.685 13 MS5.3 333 63 50 192 118 47 2013−11−23 06:04:24 124.113 44.669 13 MS5.8 332 18 52 231 140 76 2013−11−23 06:32:31 124.155 44.652 13 MS5.0 323 40 35 199 118 68 -
房立华,吴建平,王未来,吕作勇,王长在,杨婷,蔡妍. 2013. 四川芦山MS7.0级地震及其余震序列重定位[J]. 科学通报,58(20):1901–1909. Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Cai Y. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin,58(28/29):3451–3459. doi: 10.1007/s11434-013-6000-2
傅维洲,贺日政. 1999. 松辽盆地及周边地带地震构造特征[J]. 世界地质,18(2):95–100. Fu W Z,He R Z. 1999. Structural characteristics of earthquakes in Songliao Basin and its peripheral regions[J]. World Geology,18(2):95–100 (in Chinese).
韩立波,蒋长胜,包丰. 2012. 2010年河南太康MS4.6地震序列震源参数的精确确定[J]. 地球物理学报,55(9):2973–2981. doi: 10.6038/j.issn.0001-5733.2012.09.016 Han L B,Jiang C S,Bao F. 2012. Source parameter determination of 2010 Taikang MS4.6 earthquake sequences[J]. Chinese Journal of Geophysics,55(9):2973–2981 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.09.016
胡望水,吕炳全,张文军,毛治国,冷军,官大勇. 2005. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学,40(1):16–31. doi: 10.3321/j.issn:0563-5020.2005.01.002 Hu W S,Lü B Q,Zhang W J,Mao Z G,Leng J,Guan D Y. 2005. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology,40(1):16–31 (in Chinese).
黄媛,吴建平,张天中,张东宁. 2008. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学:D辑,38(10):1242–1249. Huang Y,Wu J P,Zhang T Z,Zhang D N. 2008. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China:Series D,51(2):1703–1711.
李恩泽,刘财,张良怀,曾昭发. 2012. 松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展,27(4):1337–1349. Li E Z,Liu C,Zhang L H,Zeng Z F. 2012. The correlation of structure and earthquake in Songliao Basin[J]. Progress in Geophysics,27(4):1337–1349 (in Chinese). doi: 10.6038/j.issn.1004-2903.2012.04.007
李圣强,陈棋福,赵里,朱露培,高金哲,李闽峰,刘桂平,王斌. 2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制:区域波形反演与成因探讨[J]. 地球物理学报,56(9):2959–2970. doi: 10.6038/cjg20130910 Li S Q,Chen Q F,Zhao L,Zhu L P,Gao J Z,Li M F,Liu G P,Wang B. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in northeastern China:Regional waveform inversion and possible mechanism[J]. Chinese Journal of Geophysics,56(9):2959–2970 (in Chinese). doi: 10.6038/cjg20130910
李志田,赵成弼,郭孟习. 2002. 第二松花江断裂活动性剖析[J]. 吉林地质,21(1/2):15–19. Li Z T,Zhao C B,Guo M X. 2002. Analysis of the Second Songhua River fault activities[J]. Jilin Geology,21(1/2):15–19 (in Chinese).
刘权锋,盛俭,卢滔,张洪艳,盘晓东. 2017. 扶余/松原-肇东断裂研究综述[J]. 防灾科技学院学报,19(3):8–16. doi: 10.3969/j.issn.1673-8047.2017.03.002 Liu Q F,Sheng J,Lu T,Zhang H Y,Pan X D. 2017. Research status of Fuyu/Songyuan-Zhaodong fault[J]. Journal of Institute of Disaster Prevention,19(3):8–16 (in Chinese).
罗钧,赵翠萍,周连庆. 2014. 川滇块体及周边区域现今震源机制和应力场特征[J]. 地震地质,36(2):405–421. doi: 10.3969/j.issn.0253-4967.2014.02.011 Luo J,Zhao C P,Zhou L Q. 2014. Characteristics of focal mechanisms and stress field of the Chuan-Dian rhombic block and its adjacent regions[J]. Seismology and Geology,36(2):405–421 (in Chinese). doi: 10.3969/j.issn.0253-4967.2014.02.011
罗艳,倪四道,曾祥方,郑勇,陈祺福,陈颙. 2010. 汶川地震余震区东北端一个余震序列的地震学研究[J]. 中国科学:地球科学,40(6):677–687. Luo Y,Ni S D,Zeng X F,Zheng Y,Chen Q F,Chen Y. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone[J]. Science China Earth Sciences,53(11):1655–1664. doi: 10.1007/s11430-010-4026-8
罗艳,倪四道,曾祥方,谢军,陈颙,龙锋. 2011. 一个发生在沉积盖层里的破坏性地震:2010年1月31日四川遂宁—重庆潼南地震[J]. 科学通报,56(2):147–152. Luo Y,Ni S D,Zeng X F,Xie J,Chen Y,Long F. 2011. The M5.0 Suining-Tongnan (China) earthquake of 31 January 2010:A destructive earthquake occurring in sedimentary cover[J]. Chinese Science Bulletin,56(6):521–525. doi: 10.1007/s11434-010-4276-z
孙文斌,和跃时. 2004. 中国东北地区地震活动特征及其与日本海板块俯冲的关系[J]. 地震地质,26(1):122–132. doi: 10.3969/j.issn.0253-4967.2004.01.012 Sun W B,He Y S. 2004. The feature of seismicity in Northeast China and its relation to the subduction of the Japan Sea Plate[J]. Seismology and Geology,26(1):122–132 (in Chinese).
王勤彩,王中平,张金川,李君,陈章立. 2015. 2010年4月玉树MS7.3地震序列的断层结构[J]. 地球物理学报,58(6):1931–1940. doi: 10.6038/cjg20150609 Wang Q C,Wang Z P,Zhang J C,Li J,Chen Z L. 2015. Fault structure of MS7.3 Yushu earthquake sequence in April,2010[J]. Chinese Journal of Geophysics,58(6):1931–1940 (in Chinese). doi: 10.6038/cjg.20150609
王未来,吴建平,房立华,王长在. 2012. 2010年玉树MS7.1地震及其余震的双差定位研究[J]. 中国科学:地球科学,42(7):1037–1046. Wang W L,Wu J P,Fang L H,Wang C Z. 2012. Relocation of the Yushu MS7.1 earthquake and its aftershocks in 2010 from HypoDD[J]. Science China Earth Sciences,56(2):182–191. doi: 10.1007/s11430-012-4450-z
王未来,吴建平,房立华,来贵娟. 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报,57(9):3042–3051. doi: 10.6038/cjg20140929 Wang W L,Wu J P,Fang L H,Lai G J. 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan Province in 2014[J]. Chinese Journal of Geophysics,57(9):3042–3051 (in Chinese). doi: 10.6038/cjg20140929
吴微微,杨建思,苏金蓉,杜文康,高瑜,郑钰,田宝峰,刘莎,吴朋. 2014. 2013年吉林前郭-乾安震源区中强地震矩张量反演与区域孕震环境研究[J]. 地球物理学报,57(8):2541–2554. doi: 10.6038/cjg20140815 Wu W W,Yang J S,Su J R,Du W K,Gao Y,Zheng Y,Tian B F,Liu S,Wu P. 2014. Moment inversion of moderate earthquakes and seismogenic environment in Qianguo-Qian’an source region,2013,Jilin Province[J]. Chinese Journal of Geophysics,57(8):2541–2554 (in Chinese). doi: 10.6038/cjg20140815
许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005 Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).
杨宝俊,穆石敏,金旭,刘财. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报,39(6):772–782. doi: 10.3321/j.issn:0001-5733.1996.06.007 Yang B J,Mu S M,Jin X,Liu C. 1996. Synthesized study on the geophysics of Manzhouli-Suifenhe geoscience transect China[J]. Chinese Journal of Geophysics,39(6):772–782 (in Chinese).
曾祥方,罗艳,韩立波,石耀霖. 2013. 2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震[J]. 地球物理学报,56(4):1418–1424. doi: 10.6038/cjg20130437 Zeng X F,Luo Y,Han L B,Shi Y L. 2013. The Lushan MS7.0 earthquake on 20 April 2013:A high-angle thrust event[J]. Chinese Journal of Geophysics,56(4):1418–1424 (in Chinese). doi: 10.6038/cjg20130437
张凤鸣,张亚江,许晓艳,张天雷,张震. 2007. 日本海西部—中国东北深震区俯冲运动对东北地区浅源地震的动力作用[J]. 东北地震研究,23(1):33–39. Zhang F M,Zhang Y J,Xu X Y,Zhang T L,Zhang Z. 2007. Dynamic action on the subduction movement of the west part of Japan sea-deep focus earthquake region in northeast area of China to the shallow source earthquake in northeast area[J]. Seismological Research of Northeast China,23(1):33–39 (in Chinese).
张慧,焦明若,刘峡. 2012. 太平洋板块俯冲对中国东北深浅震影响机理的数值模拟[J]. 地震,32(2):135–144. doi: 10.3969/j.issn.1000-3274.2012.02.015 Zhang H,Jiao M R,Liu X. 2012. Numerical simulations of the influencing mechanism of the Pacific Plate subduction to NE China on deep and shallow earthquakes[J]. Earthquake,32(2):135–144 (in Chinese).
张萍,孙文福,苗春兰,高艳玲,邹向荣. 2009. 东北地区中强地震震源机制解分析[J]. 地震地磁观测研究,30(1):12–19. Zhang P,Sun W F,Miao C L,Gao Y L,Zou X R. 2009. Analysis of focal mechanism solution of moderately strong earthquakes in Northeast China[J]. Seismological and Geomagnetic Observation and Research,30(1):12–19 (in Chinese).
郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. " 国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of data backup center for China seismograph network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.031
郑勇,马宏生,吕坚,倪四道,李迎春,韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学 :D辑,39(4):413–426. Zheng Y,Ma H S,Lü J,Ni S D,Li Y C,Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008−05−12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China:Series D,52(6):739–753. doi: 10.1007/s11430-009-0074-3
Artemieva I M,Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere:A global study[J]. J Geophys Res,106(B8):16387–16414. doi: 10.1029/2000JB900439
Gephart J W,Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:Application to the San Fernando earthquake sequence[J]. J Geophys Res,89(B11):9305–9320. doi: 10.1029/JB089iB11p09305
Gudmundsson Ó,Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res,103(B4):7121–7136. doi: 10.1029/97JB02488
Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044
Hardebeck J L,Michael A J. 2006. Damped regional-scale stress inversions methodology and examples for southern California and the Coalinga aftershock sequence[J]. J Geophys Res,111(B11):B11310.
Helmberger D V,Engen G R. 1980. Modeling the long-period body waves from shallow earthquakes at regional ranges[J]. Bull Seismol Soc Am,70(5):1699–1714.
Pasyanos M E,Masters T E,Laske G,Ma Z. 2014. LITHO1.0: An updated crust and lithospheric model of the Earth[J]. J Geophys Res,119(3):2153–2173. doi: 10.1002/2013JB010626
Lund B,Townend J. 2007. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor[J]. Geophys J Int,170(3):1328–1335. doi: 10.1111/gji.2007.170.issue-3
Martínez-Garzón P,Kwiatek G,Sone H,Bohnhoff M,Dresen G,Hartline C. 2014. Spatiotemporal changes,faulting regimes,and source parameters of induced seismicity:A case study from the Geysers geothermal field[J]. J Geophys Res,119(11):8378–8396. doi: 10.1002/2014JB011385
Michael A J. 1984. Determination of stress from slip data:Faults and folds[J]. J Geophys Res,89(B13):11517–11526. doi: 10.1029/JB089iB13p11517
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Sco Am,90(6):1353–1368. doi: 10.1785/0120000006
Waldhauser F,Ellsworth W L. 2002. Fault structure and mechanics of the Hayward fault,California,from double-difference earthquake locations[J]. J Geophys Res,107(B3):ESE 3-1–ESE 3-15.
Wan Y G. 2010. Contemporary tectonic stress field in China[J]. Earthquake Science,23(4):377–386. doi: 10.1007/s11589-010-0735-5
Zhao L S,Helmberger D V. 1994. Source estimation from broad-band regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.
Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.
Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x