汤东活动断裂带气体地球化学特征

胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科

胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科. 2019: 汤东活动断裂带气体地球化学特征. 地震学报, 41(4): 524-535. DOI: 10.11939/jass.20180131
引用本文: 胡宁, 马志敏, 娄露玲, 张宝山, 王宇, 王明亮, 王文净, 郭德科. 2019: 汤东活动断裂带气体地球化学特征. 地震学报, 41(4): 524-535. DOI: 10.11939/jass.20180131
Hu Ning, Ma Zhimin, Lou Luling, Zhang Baoshan, Wang Yu, Wang Mingliang, Wang Wenjing, Guo Deke. 2019: Geochemical characteristics of soil gas in Tangdong active fault zone. Acta Seismologica Sinica, 41(4): 524-535. DOI: 10.11939/jass.20180131
Citation: Hu Ning, Ma Zhimin, Lou Luling, Zhang Baoshan, Wang Yu, Wang Mingliang, Wang Wenjing, Guo Deke. 2019: Geochemical characteristics of soil gas in Tangdong active fault zone. Acta Seismologica Sinica, 41(4): 524-535. DOI: 10.11939/jass.20180131

汤东活动断裂带气体地球化学特征

基金项目: 地震科技星火计划项目(XH19028YSX和XH16026)和国家自然科学基金(41601584)共同资助
详细信息
    通讯作者:

    张宝山: e-mail:tuoniao667@163.com

  • 中图分类号: P315.7

Geochemical characteristics of soil gas in Tangdong active fault zone

  • 摘要: 本文采用野外多期跨断层流动观测测定了汤东活动断裂带H2,Rn和CO2的分布特征,以此分析了该断裂带的气体地球化学特征及其活动背景,从而揭示了气体地球化学特征与构造之间的联系。分析结果显示:不同测量期次的H2,Rn和CO2浓度存在显著差异,其中张河村测线的各期次测量结果中6月份各组分气体浓度均显著高于其它期次,而邢李庄测线的测量结果中1月份各组分气体浓度均显著高于其它期次;各测量期次的各气体组分分布曲线特征相似,高值异常点的重现性较好。张河村测线多期测量的H2和Rn浓度背景值分别为(8.93±3.92)×10−6和(17.38±4.28) kBq/m3,在测线西部距汤东主断裂135 m和230 m处H2与Rn同步出现高值异常;邢李庄测线H2和Rn的背景值分别为(41.20±16.64)×10−6和(29.00±8.28) kBq/m3,H2与Rn在测线西部距汤东主断裂60 m处同步出现异常。两测线的气体浓度高值异常部位与地球物理、跨断层联合钻孔详勘结果之间存在较好的对应关系,由此可推断观测气体浓度能够敏感地指示断裂带位置,而且H2和Rn浓度是汤东断裂带气体地球化学观测的关键指标。
    Abstract: Based on the distribution of H2, Rn and CO2 concentrations in the Tangdong active fault zone determined by multi-phase cross-fault observation in the field, this paper analyzed the gas geochemical characteristics and tectonic activity background of the fault zone, and revealed the relationship between geochemical characteristics of soil gases and the geological structure. The results showed that there were significant variations in H2, Rn and CO2 concentrations in different measurement periods. The gas concentrations of H2, Rn and CO2 in June were significantly higher than those in other measurement periods on the Zhanghecun measurement profile, while the gas concentrations of H2, Rn and CO2 in January were significantly higher than those in other measurement periods on the Xinglizhuang measurement profile. And the background values of H2 and Rn on Zhanghecun measurement line were (8.93±3.92)×10−6 and (17.38±4.28) kBq/m3, respectively, and concentrations of H2 and Rn exhibited synchronous anomalies at 135 m and 230 m from the main fault of Tangdong in the west of the measurement line. Accordingly on the Xinglizhuang measurement line, background concentrations values of H2 and Rn were (41.20±16.64)×10−6, (29.00±8.28) kBq/m3, and concentrations of H2 and Rn showed synchronous anomalies at 60 m from the main fault of Tangdong in the west of the measurement line. Furthermore, the shape of the gas concentration curves were similar for different measurement periods, and the anomaly spike showed perfect reproducibility on each investigation profile. There was a good correspondence between the high-value anomalies of the two investigation profiles and the results from geophysical exploration and trans-fault joint drilling. Therefore, it is deduced that the concentrations of H2 and Rn, which could be sensi-tive to the fault location, are the key indicators for gas geochemical observation of Tangdong fault zone.
  • 图  1   研究区区域构造及测线位置

    F1:汤西断裂;F2:汤中断裂;F3:汤东断裂带;F4:新商断裂;F5:盘古寺断裂;F6:凤凰岭断裂

    Figure  1.   Regional geology structure and location of observation lines for the target fault

    F1:Tangxi fault;F2:Tangzhong fault; F3:Tangdong fault zone; F4:Xinshang fault;F5:Pangusi fault;F6:Fenghuangling fault

    图  2   张河村测线H2 (a,b),Rn (c,d)和CO2 (e,f)浓度的分布特征

    Figure  2.   Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Zhanghecun measurement line

    图  3   邢李庄测线H2 (a,b),Rn (c,d)和CO2 (e,f)分布特征

    Figure  3.   Distribution characteristics of soil H2 (a,b),Rn (c,d) and CO2 (e,f)concentrations on Xinglizhuang meansurement line

    图  4   2018年1月(a)和6月(b)汤东断裂Rn浓度与CO2浓度的相关性

    Ⅰ表示气体浅部循环,Ⅱ表示可能包含部分深部来源气体,Ⅲ表示气体水平迁移

    Figure  4.   The relationships between Rn and CO2 concentration in Tangdong active fault zone

    Ⅰ indicates that Rn mainly comes from shallow gas circulation,Ⅱ indicates that the fault gases could contain partial deep-source information,Ⅲ indicates that CO2 mainly comes from gas horizontal migration

    表  1   汤东活动断裂带土壤气H2,Rn和CO2浓度分布特征

    Table  1   Statistics on characteristics of soil H2,Rn and CO2 concentrations on Tangdong active fault zone

    测线指标时间测点数最大值最小值平均值中值下四
    分位
    上四
    分位
    四分位
    间距
    标准差峰背比背景值


    H2/10−610月3423.701.076.295.002.3810.678.295.254.398.93
    1月3244.422.788.476.024.368.143.788.326.75
    6月30110.401.5821.4713.655.6126.1020.4925.858.02
    Rn/(kBq·m−310月3438.148.5618.2017.5614.0821.477.396.662.2517.38
    1月3237.359.7617.5417.0113.4519.816.365.722.21
    6月3046.704.6419.6817.5213.6325.0511.428.892.58
    CO21月170.54%0.15%0.29%0.22%0.19%0.40%0.21%0.12 %1.99
    6月165.00%0.73%2.00%1.47%0.92%3.13%2.21%1.34%2.78


    H2/10−610月3382.1911.4137.6234.8322.7649.0926.3317.772.3541.20
    1月30185.310.658.7044.4819.7177.1757.4647.573.98
    6月3087.790.2734.8130.9416.2644.2628.0124.732.82
    Rn/(kBq·m−3)10月3362.6010.1128.3924.9119.6936.7217.0412.672.3829.00
    1月3062.2114.035.2933.9324.0845.2821.2012.481.81
    6月3059.967.5224.5822.0112.6933.3520.6614.022.71
    CO21月160.78%0.16%0.38%0.36%0.19%0.50%0.31%0.20%2.22
    6月142.00%0.52%1.09%0.98%0.63%1.53%0.91%0.51%2.04
    下载: 导出CSV
  • 李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009

    Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).

    李源,马兴全,夏修军,谢恒义,王志铄,赵显刚. 2018. 河南新郑—太康断裂东段土壤气体地球化学特征[J]. 地震,38(3):49–57. doi: 10.3969/j.issn.1000-3274.2018.03.005

    Li Y,Ma X Q,Xia X J,Xie H Y,Wang Z S,Zhao X G. 2018. Geochemical characteristics of soil gas in the eastern section of Xinzheng-Taikang fault,Henan[J]. Earthquake,38(3):49–57 (in Chinese).

    刘保金,何宏林,石金虎,冉永康,袁洪克,谭雅丽,左莹,何银娟. 2012. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,55(10):3266–3276. doi: 10.6038/j.issn.0001-5733.2012.10.009

    Liu B J,He H L,Shi J H,Ran Y K,Yuan H K,Tan Y L,Zuo Y,He Y J. 2012. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang mountain[J]. Chinese Journal of Geophysics,55(10):3266–3276 (in Chinese).

    刘菁华,王祝文,刘树田,王晓丽. 2006. 城市活动断裂带的土壤氡、汞气评价方法[J]. 吉林大学学报(地球科学版),36(2):295–297.

    Liu J H,Wang Z W,Liu S T,Wang X L. 2006. The evaluation method of soil radon and mercury gas measurement about urban active fault zones[J]. Journal of Jilin University (Earth Science Edition),36(2):295–297 (in Chinese).

    刘舒波,唐力君,孙青,岑况. 2012. 汶川地震断裂带科学钻探工程2号孔350—800 m井段的钻探泥浆气体组分变化[J]. 物探与化探,36(1):48–53. doi: 10.11720/wtyht.2012.1.10

    Liu S B,Tang L J,Sun Q,Cen K. 2012. Variation of drilling mudgas components at 350−800 m interval of No. 2 borehole of scientific drilling for Wenchuan seismic faulted zone[J]. Geophysical and Geochemical Exploration,36(1):48–53 (in Chinese).

    陶明信,徐永昌,史宝光,蒋忠惕,沈平,李晓斌,孙明良. 2005. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:D辑,35(5):441–451.

    Tao M X,Xu Y C,Shi B G,Jiang Z T,Shen P,Li X B,Sun M L. 2005. Mantle degassing and deep geological structural features of different types of fault zones in China[J]. Science in China:Series D,35(5):441–451 (in Chinese).

    张慧,苏鹤军,李晨桦. 2013. 合作市隐伏断层控制性地球化学探测场地试验[J]. 地震工程学报,35(3):618–624. doi: 10.3969/j.issn.1000-0844.2013.03.0618

    Zhang H,Su H J,Li C H. 2013. Field test on the geochemical detection of concealed fault in Hezuo City[J]. China Earthquake Engineering Journal,35(3):618–624 (in Chinese).

    中国地震局地球物理勘探中心. 2016. 新乡市活断层探测与地震危险性评价[R]. 郑州: 中国地震局地球物理勘探中心: 163−295.

    Geophysical Exploration Center, China Earthquake Administration. 2016. Active Fault Detection and Seismic Risk Assessment in Xinxiang City[R]. Zhengzhou: Geophysical Exploration Center, China Earthquake Administration: 163−295 (in Chinese).

    周晓成,王传远,柴炽章,司学芸,雷启云,李营,谢超,刘胜昌. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质,33(1):123–132. doi: 10.3969/j.issn.0253-4967.2011.01.012

    Zhou X C,Wang C Y,Chai C Z,Si X Y,Lei Q Y,Li Y,Xie C,Liu S C. 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault[J]. Seismology and Geology,33(1):123–132 (in Chinese).

    周晓成,杜建国,陈志,崔月菊,刘雷. 2012. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,31(4):340–346. doi: 10.3969/j.issn.1007-2802.2012.04.004

    Zhou X C,Du J G,Chen Z,Cui Y J,Liu L. 2012. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(4):340–346 (in Chinese).

    Barman C,Ghose D,Sinha B,Deb A. 2016. Detection of earthquake induced radon precursors by Hilbert-Huang transform[J]. J Appl Geophys,133:123–131. doi: 10.1016/j.jappgeo.2016.08.004

    Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.

    Ciotoli G,Lombardi S,Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain,central Italy[J]. J Geophys Res,112(B5):B05407.

    Dubessy J,Pagel M,Beny J M,Christensen H,Hickel B,Kosztolanyi C,Poty B. 1988. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits[J]. Geochim Cosmochim Acta,52(5):1155–1167. doi: 10.1016/0016-7037(88)90269-4

    Eisbrenner G,Evans H J. 1983. Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associa-tions[J]. Annu Rev Plant Physiol,34(1):105–136. doi: 10.1146/annurev.pp.34.060183.000541

    Fu C C,Yang T F,Walia V,Chen C H. 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan[J]. Geochem J,39(5):427–439. doi: 10.2343/geochemj.39.427

    Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai TH. 2017a. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032

    Fu C C,Walia V,Yang T F,Lee L C,Liu T K,Chen C H,Kumar A,Lin S J,Lai T H,Wen K L. 2017b. Preseismic anoma-lies in soil-gas radon associated with 2016 M6.6 Meinong earthquake,Southern Taiwan[J]. Terr Atmos Ocean Sci,28(5):787–798. doi: 10.3319/TAO.2017.03.22.01

    Fu C C,Yang T F,Du J,Walia V,Chen Y G,Liu T K,Chen C H. 2008. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiat Meas,43:S348–S352. doi: 10.1016/j.radmeas.2008.03.035

    Ito T,Nagamine K,Yamamoto K,Adachi M,Kawabe I. 1999. Preseismic hydrogen gas anomalies caused by stress-corrosion process preceding earthquakes[J]. Geophys Res Lett,26(13):2009–2012. doi: 10.1029/1999GL900407

    Kumar G,Kumari P,Kumar A,Prasher S,Kumar M. 2017. A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India[J]. Ann Geophys,60(3):S0329.

    Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)

    Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006

    Neri M,Ferrera E,Giammanco S,Currenti G,Cirrincione R,Patanè G,Zanon V. 2016. Soil radon measurements as a potential tracer of tectonic and volcanic activity[J]. Sci Rep,6:24581. doi: 10.1038/srep24581

    Peters V,Conrad R. 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biol Biochem,28(3):371–382. doi: 10.1016/0038-0717(95)00146-8

    Saruwatari K,Kameda J,Tanaka H. 2004. Generation of hydrogen ions and hydrogen gas in quartz-water crushing experiments:An example of chemical processes in active faults[J]. Phys Chem Miner,31(3):176–182. doi: 10.1007/s00269-004-0382-2

    Sciarra A,Mazzini A,Inguaggiato S,Vita F,Lupi M,Hadi S. 2018. Radon and carbon gas anomalies along the Watukosek fault system and Lusi mud eruption,Indonesia[J]. Mar Petrol Geol,90:77–90. doi: 10.1016/j.marpetgeo.2017.09.031

    Seyfried Jr W E,Foustoukos D I,Fu Q. 2007. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 ℃,500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges[J]. Geochim Cosmochim Acta,71(15):3872–3886. doi: 10.1016/j.gca.2007.05.015

    Sugimoto A,Wada E. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation[J]. Geochim Cosmochim Acta,59(7):1329–1337. doi: 10.1016/0016-7037(95)00047-4

    Sugisaki R,Ido M,Takeda H,Isobe Y,Hayashi Y,Nakamura N,Satake H,Mizutani Y. 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. J Geol,91(3):239–258. doi: 10.1086/628769

    Sun Y T,Zhou X C,Zheng G D,Li J,Shi H Y,Guo Z F,Du J G. 2017. Carbon monoxide degassing from seismic fault zones in the Basin and Range Province,west of Beijing,China[J]. J of Asian Earth Sci,149:41–48. doi: 10.1016/j.jseaes.2017.07.054

    Walia V,Mahajan S,Kumar A,Singh S,Bajwa B S,Dhar S,Yang T F. 2008. Fault delineation study using soil-gas method in the Dharamsala area,NW Himalayas,India[J]. Radiat Meas,43(S1):S337–S342.

    Walia V,Yang T F,Hong W L,Lin S J,Fu C C,Wen K L,Chen C H. 2009. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Appl Radiat Isotopes,67(10):1855–1863. doi: 10.1016/j.apradiso.2009.07.004

    Weinlich F H,Faber E,Boušková A,Horálek J,Teschner M,Poggenburg J. 2006. Seismically induced variations in MariánskéLázně fault gas composition in the NW Bohemian swarm quake region,Czech Republic:A continuous gas monitoring[J]. Tectonophysics,421(1/2):89–110.

    Weinlich F H,Gaždová R,Teschner M,Poggenburg J. 2016. The October 2008 NovýKostel earthquake swarm and its gas geochemical precursor[J]. Geofluids,16(5):826–840. doi: 10.1111/gfl.2016.16.issue-5

    Yoshizaki M,Shibuya T,Suzuki K,Shimizu K,Nakamura K,Takai K,Omori S,Maruyama S. 2009. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 ℃ and 500 bars: A preliminary result from on-going experiment[J]. Geochem J,43(5):e17–e22. doi: 10.2343/geochemj.1.0058

    Yuce G,Ugurluoglu D Y,Adar N,Yalcin T,Yaltirak C,Streil T,Oeser V. 2010. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey)[J]. Appl Geochem,25(4):572–579. doi: 10.1016/j.apgeochem.2010.01.013

    Yuce G,Fu C C,D′Alessandro W,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik Basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003

    Zhang W B,Du J G,Zhou X C,Wang F. 2016. Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing,China:Constraints from helium and carbon isotopes[J]. J Volcanol Geoth Res,309:45–52. doi: 10.1016/j.jvolgeores.2015.10.024

    Zhou H L,Su H J,Zhang H,Li C H. 2017. Correlations between soil gas and seismic activity in the generalized Haiyuan fault zone,north-central China[J]. Nat Hazards,85(2):763–776. doi: 10.1007/s11069-016-2603-7

  • 期刊类型引用(0)

    其他类型引用(3)

图(4)  /  表(1)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  432
  • PDF下载量:  48
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-08-27
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回