安宁河断裂带土壤汞的分布特征

张磊, 刘耀炜, 包创, 郭丽爽

张磊, 刘耀炜, 包创, 郭丽爽. 2019: 安宁河断裂带土壤汞的分布特征. 地震学报, 41(2): 249-258. DOI: 10.11939/jass.20180141
引用本文: 张磊, 刘耀炜, 包创, 郭丽爽. 2019: 安宁河断裂带土壤汞的分布特征. 地震学报, 41(2): 249-258. DOI: 10.11939/jass.20180141
Zhang Lei, Liu Yaowei, Bao Chuang, Guo Lishuang. 2019: Distribution characteristics of soil mercury in Anninghe fault zone. Acta Seismologica Sinica, 41(2): 249-258. DOI: 10.11939/jass.20180141
Citation: Zhang Lei, Liu Yaowei, Bao Chuang, Guo Lishuang. 2019: Distribution characteristics of soil mercury in Anninghe fault zone. Acta Seismologica Sinica, 41(2): 249-258. DOI: 10.11939/jass.20180141

安宁河断裂带土壤汞的分布特征

基金项目: 国家自然科学基金(41703009)、震情跟踪定向工作任务(2019010301)和中国地震局地壳应力研究所基本科研业务费专项(ZDJ2016–08)共同资助
详细信息
    通讯作者:

    刘耀炜: e-mail:liuyw20080512@126.com

  • 中图分类号: P315.724

Distribution characteristics of soil mercury in Anninghe fault zone

  • 摘要: 对安宁河断裂带地表破裂带土壤的总汞(THg)、总有机碳(TOC)和主量元素的含量进行了研究。结果表明,在小庙和紫马跨地表破裂带测线上,土壤THg与土壤气Hg含量的峰值位置较为一致,能够指示出断裂带释放Hg的通道位置。小庙、羊福山、野鸡洞和紫马跨地表破裂带土壤垂向剖面上THg与TOC的相关系数表明,TOC是影响土壤THg含量的重要因素。通过土壤THg与TOC,THg与化学蚀变指数(CIA)的相关系数以及THg含量的垂向分布模式,识别出安宁河断裂带土壤THg剖面的干扰来源、背景来源和断裂带脱气来源,为分析Hg的分布特征与构造活动之间的关系提供参考依据。
    Abstract: In this paper, the concentrations of total mercury, total organic carbon and major elements of soil in the surface rupture zone of Anninghe fault zone were analyzed. The results showed that the peak distribution of total mercury was consistent with that of soil gas mercury in Xiaomiao and Zimakua area, which may reveal the channel location of mercury released from the fault. The correlation coefficient between total mercury and total organic carbon in the soil vertical profiles of Xiaomiao, Yangfushan, Yejidong and Zimakua indicated that, total organic carbon was an important factor to control the distribution of total mercury concentration in the soil. The correlation coefficient among total mercury, total organic carbon and CIA index and vertical distribution of mercury concentration indicated that the sources of mercury in the soil profiles were affected by interference, background and the fault degassing. This study provides a reference for analyzing the relationship between distribution of mercury and tectonic activity.
  • 图  1   安宁河断裂带和采样点位置图

    Figure  1.   Geologic map of the Anninghe fault zone and sampling sites

    图  2   小庙跨断层土壤气Hg (a)、土壤THg (b) 和TOC (c) 的含量分布图

    Figure  2.   The concentration distribution diagram of gas Hg (a),THg (b) and TOC (c) in soil across Anninghe fault zone in Xiaomiao area

    图  3   紫马跨跨断层土壤气Hg (a)、土壤THg (b) 和土壤TOC (c) 的含量分布图

    Figure  3.   The concentration distribution diagram of gas Hg (a),THg (b) and TOC (c) in soil across Anninghe fault in Zimakua area

    图  4   安宁河断裂带土壤剖面THg (圆点)和TOC (三角形)含量分布图

    (a) 小庙;(b) 羊福山;(c) 野鸡洞;(d) 紫马跨

    Figure  4.   Distribution of THg (dots) and TOC (triangles) concentration of soil profiles in Anninghe fault zone

    (a) Xiaomiao;(b) Yangfushan;(c) Yejidong;(d) Zimakua

    图  5   土壤Hg含量垂向分布示意图(据胡振清,1991

    A为A层土壤,B为B层土壤,H为土层深度,h为干扰异常影响深度(a) 正常场地段;(b) 干扰异常地段;(c) 生根异常地段

    Figure  5.   The sketch map of vertical distribution of Hg concentration in soil (after Hu,1991

    A represents A layer of soil;B represents B layer of soil;H represents the soil depth;h represents the soil influence depth of disturbance. (a) Hg normal section;(b) Hg abnormal section due to surface disturbance;(c) Hg abnormal section with underground supply

    表  1   安宁河断裂带小庙(XM)和紫马跨(ZMK)跨断层土壤样品数据

    Table  1   Soil samples data of Xiaomiao (XM) and Zimakua (ZMK) across the Anninghe fault zone

    样品编号TFe2O3含量MnO含量样品编号TFe2O3含量MnO含量
    XM-14.45%0.09%ZMK-17.56%0.15%
    XM-24.80%0.09%ZMK-28.05%0.18%
    XM-35.02%0.08%ZMK-37.08%0.09%
    XM-45.38%0.08%ZMK-47.26%0.18%
    XM-55.95%0.10%ZMK-57.91%0.12%
    XM-65.73%0.09%ZMK-66.51%0.09%
    XM-75.14%0.07%ZMK-77.13%0.09%
    XM-84.98%0.06%ZMK-84.82%0.09%
    XM-94.63%0.07%ZMK-9
    XM-104.35%0.08%ZMK-10
    XM-114.11%0.08%
    下载: 导出CSV

    表  2   安宁河断裂带土壤剖面样品数据

    Table  2   Data of soil profile samples in the Anninghe fault zone

    位置采样深度/cmAl2O3含量CaO含量K2O含量Na2O含量CIA
    小庙9015.16%0.52%2.74%1.12%72.46
    8014.66%0.49%2.70%1.09%72.30
    7014.75%0.49%2.66%1.10%72.52
    6014.96%0.46%2.69%1.05%73.17
    5014.26%0.49%2.64%1.09%71.98
    4013.94%0.50%2.62%1.12%71.35
    3014.06%0.55%2.56%1.18%71.08
    2014.26%0.61%2.56%1.24%70.63
    1014.65%0.69%2.62%1.31%70.08
    羊福山9011.46%0.20%2.92%0.55%72.09
    8011.30%0.20%2.80%0.53%72.55
    7010.94%0.18%2.72%0.50%72.73
    6010.40%0.18%2.71%0.46%72.10
    5010.04%0.16%2.73%0.45%71.54
    409.35%0.17%2.67%0.43%70.49
    309.17%0.16%3.11%0.48%67.30
    209.24%0.18%3.15%0.51%66.84
    109.37%0.20%2.91%0.52%68.16
    野鸡洞9013.26%1.00%4.77%2.73%53.58
    8013.79%1.20%4.69%2.34%55.35
    7013.37%1.11%4.35%1.98%57.21
    6015.12%1.37%4.69%2.34%56.94
    5013.22%1.32%4.22%1.92%56.59
    4013.89%1.28%4.70%2.17%55.80
    3012.78%1.21%4.28%1.96%55.92
    2014.34%1.42%4.49%2.31%56.02
    1012.92%1.32%4.34%2.18%54.70
    紫马跨7017.54%2.42%1.68%1.81%69.28
    6017.00%2.45%1.62%1.78%69.06
    5017.63%2.18%1.69%1.68%70.54
    4014.80%2.22%1.55%1.76%66.45
    3014.25%2.55%1.51%1.87%64.65
    2014.53%2.48%1.56%1.97%64.00
    1014.55%2.34%1.63%1.98%63.72
    下载: 导出CSV
  • 程建武,郭桂红,岳志军. 2010. 安宁河断裂带晚第四纪活动的基本特征及强震危险性分析[J]. 地震研究,33(3):265–272. doi: 10.3969/j.issn.1000-0666.2010.03.005

    Cheng J W,Guo G H,Yue Z J. 2010. Basic characteristics and earthquake risk analysis of the Anning river fault zone in the west of Sichuan Province[J]. Journal of Seismological Research,33(3):265–272 (in Chinese).

    冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,10(4):539–544. doi: 10.3321/j.issn:1005-2321.2003.04.019

    Feng L J,Chu X L,Zhang Q R,Zhang T G. 2003. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers,10(4):539–544 (in Chinese).

    胡振清. 1991. 土壤热释汞测量与地震预测[G]//断层气测量在地震科学中的应用. 北京: 地震出版社: 209–216.

    Hu Z Q. 1991. Measurement of Heat-Released Mercury in Soil and Earthquake Prediction[G]//Applications of Measurement of Fracture Gases in Seismological Science. Beijing: Seismological Press: 209–216 (in Chinese).

    贾俊平, 何晓群, 金勇进. 2018. 统计学[M]. 第7版. 北京: 中国人民大学出版社: 239–240.

    Jia J P, He X Q, Jin Y J. 2018. Statistics[M]. 7th ed. Beijing: China Renmin University Press: 239–240 (in Chinese).

    金仰芬,伍宗华,黄宏库,申春生,魏家珍,朱宏任,阎立璋. 1987. 汞量测量监测预报地震的前景[J]. 地震,(5):6–14.

    Jin Y F,Wu Z H,Huang H K,Shen C S,Wei J Z,Zhu H R,Yan L Z. 1987. Promise of monitoring and predicting earthquakes by mercury survey[J]. Earthquake,(5):6–14 (in Chinese).

    路鹏,袁一凡,袁洪克,刘学领,于晓辉,段玉石. 2012. 安宁河、则木河构造区近期强震危险性的概率估计[J]. 地震,32(4):62–72. doi: 10.3969/j.issn.1005-586X.2012.04.012

    Lu P,Yuan Y F,Yuan H K,Liu X L,Yu X H,Duan Y S. 2012. Probabilistic estimate of strong earthquake risk in the Anninghe-Zemuhe tectonic zone[J]. Earthquake,32(4):62–72 (in Chinese).

    裴锡瑜,王新民,张成贵. 1997. 晚第四纪安宁河活断裂分段的基本特征[J]. 四川地震,(4):52–61.

    Pei X Y,Wang X M,Zhang C G. 1997. Basic segmentation characteristics on Late Quaternary Anninghe active faults[J]. Earthquake Research in Sichuan,(4):52–61 (in Chinese).

    冉勇康,程建武,宫会玲,陈立春. 2008. 安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率[J]. 地震地质,30(1):86–98. doi: 10.3969/j.issn.0253-4967.2008.01.006

    Ran Y K,Cheng J W,Gong H L,Chen L C. 2008. Late Quaternary geomorphic deformation and displacement rates of the Anninghe fault around Zimakua[J]. Seismology and Geology,30(1):86–98 (in Chinese).

    汪春华. 2016. 2015年西昌市农村土壤中铅、镉、汞、砷、铬污染调查[J]. 中国农村卫生,(6):6.

    Wang C H. 2016. Xichang in 2015 rural soil lead,cadmium,mercury,arsenic,chromium pollution survey[J]. Chinas Rural Health,(6):6 (in Chinese).

    王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101.

    Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).

    闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征[J]. 地震地质,22(3):239–249. doi: 10.3969/j.issn.0253-4967.2000.03.005

    Wen X Z. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone,western Sichuan[J]. Seismology and Geology,22(3):239–249 (in Chinese).

    闻学泽,马胜利,雷兴林,西泽(桑原)保人,木口努,陈渠. 2007. 安宁河—则木河断裂带过渡段及其附近新发现的历史大地震破裂遗迹[J]. 地震地质,29(4):826–833. doi: 10.3969/j.issn.0253-4967.2007.04.013

    Wen X Z,Ma S L,Lei X L,Nishizawa (Kuwahara) Y,Kiguchi T,Chen Q. 2007. Newly found surface rupture remains of large historical earthquakes on and near the transition segment of the Anninghe and Zemuhe fault zones,western Sichuan,China[J]. Seismology and Geology,29(4):826–833 (in Chinese).

    闻学泽,范军,易桂喜,邓一唯,龙锋. 2008. 川西安宁河断裂上的地震空区[J]. 中国科学:D辑,38(7):797–807.

    Wen X Z,Fan J,Yi G X,Deng Y W,Long F. 2008. A seismic gap on the Anninghe fault in western Sichuan,China[J]. Science in China:Series D,51(10):1375–1387. doi: 10.1007/s11430-008-0114-4

    周晓成,孙凤霞,陈志,吕超甲,李静,仵柯田,杜建国. 2017. 汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,33(1):291–303.

    Zhou X C,Sun F X,Chen Z,Lü C J,Li J,Wu K T,Du J G. 2017. Degassing of CO2,CH4,Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica,33(1):291–303 (in Chinese).

    Bindler R,Yu R L,Hansson S,Claßen N,Karlsson J. 2012. Mining,metallurgy and the historical origin of mercury pollution in lakes and watercourses in central Sweden[J]. Environ Sci Technol,46(15):7984–7991. doi: 10.1021/es300789q

    Dai Z H,Feng X B,Zhang C,Wang J F,Jiang T M,Xiao H J,Li Y,Wang X,Qiu G L. 2013. Assessing anthropogenic sources of mercury in soil in Wanshan Hg mining area,Guizhou,China[J]. Environ Sci Pollut Res,20(11):7560–7569. doi: 10.1007/s11356-013-1616-y

    Deison R,Smol J P,Kokelj S V,Pisaric M F J,Kimpe L E,Poulain A J,Sanei H,Thienpont J R,Blais J M. 2012. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta Uplands,NT,Canada[J]. Environ Sci Technol,46(16):8748–8755. doi: 10.1021/es300798w

    Li P,Feng X B,Qiu G L,Shang L H,Wang S F. 2012. Mercury pollution in Wuchuan mercury mining area,Guizhou,southwestern China:The impacts from large scale and artisanal mercury mining[J]. Environ Int,42:59–66. doi: 10.1016/j.envint.2011.04.008

    McLennan S M. 1993. Weathering and global denudation[J]. J Geol,101(2):295–303. doi: 10.1086/648222

    Nesbitt H W,Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299(5885):715–717. doi: 10.1038/299715a0

    Sun X L,Si X Y,Xiang Y,Liu D Y. 2017. Soil mercury spatial variations in the fault zone and corresponding influence factors[J]. Terr Atmos Ocean Sci,28(3):283–294. doi: 10.3319/TAO.2016.09.29.02

    Varekamp J C,Buseck P R. 1984. Changing mercury anomalies in Long Valley,California:Indication for magma movement or seismic activity[J]. Geology,12(5):283–286. doi: 10.1130/0091-7613(1984)12<283:CMAILV>2.0.CO;2

    Yan H Y,Feng X B,Shang L H,Qiu G L,Dai Q J,Wang S F,Hou Y M. 2008. The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir,Guizhou Province,China[J]. Sci Total Environ,407(1):497–506. doi: 10.1016/j.scitotenv.2008.08.043

    Yang D X,Zhang L,Liu Y W,Ren H W,Xie F R,Chen G C. 2015. Mercury indicating inflow zones and ruptures along the Wenchuan MS8.0 earthquake fault[J]. Chinese Journal of Geochemistry,34(2):201–207. doi: 10.1007/s11631-014-0028-0

    Zhang L,Liu Y W,Guo L S,Yang D X,Fang Z,Chen T,Ren H W,Yu B. 2014. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)[J]. Tectonophysics,619/620:79–85. doi: 10.1016/j.tecto.2013.08.025

    Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geoche-mistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11:5. doi: 10.1186/1467-4866-11-5

图(5)  /  表(2)
计量
  • 文章访问数:  2696
  • HTML全文浏览量:  1171
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-09
  • 修回日期:  2019-01-15
  • 网络出版日期:  2019-03-20
  • 发布日期:  2019-02-28

目录

    /

    返回文章
    返回