Simulation on energy release of fault rock mass triggered by stress increment and discussion on seismogenesis:Taking Longmenshan fault zone as an example
-
摘要: 本文以龙门山断裂带为背景,基于岩体应变能基本理论,使用FLAC软件模拟地震能量源和能量释放形式,计算结果显示:在0.01 MPa水平应力增量作用下,龙门山断裂带及附近区域可释放的应变能约为3.24×1013 J;使得断层面之间发生滑移,克服断层面滑动摩擦所需消耗的能量约为2.10×1013 J;岩体在重力方向上产生位移,克服重力做功所消耗的能量约为1.14×1013 J。由此可推断:在一定区域内,应力触发释放能量值与克服断层面滑动摩擦和克服重力做功所消耗的能量之和大致相当;应变能可能会在某一区域范围内集中释放,形成地震效应。本次应力增量触发断层周围岩体能量释放事件中,在映秀—北川断裂与灌县—安县断裂之间的局部区域集中释放的能量为7.67×1012 J,相当于一次MS5.39地震发生所释放的能量。Abstract: Taking Longmenshan fault zone as the research background, basing on theory of strain energy of rock mass, this paper simulated energy source and energy release form of a simulated earthquake by using the software FLAC. Calculation results show that the total strain energy that can be released from the Longmenshan fault zone and its vicinity is approximately 3.24×1013 J under the action of horizontal stress increment 0.01 MPa. When stress triggering causes slip between fault planes, energy consumption for overcoming sliding friction on the surface is about 2.10×1013 J on fault plane. When the rock mass moves in the direction of gravity, energy consumption for overcoming gravity is 1.14×1013 J. Therefore it is deduced that, in a certain region, the energy released by stress triggering is approximately equal to the sum of consumption energy for overcoming the friction on fault surface and that for overcoming the gravity of regional rock mass. Strain energy may be released in a certain range, resulting in seismic effect. In the event of energy release of rock mass around fault triggered by stress increment, as for the the local region between the Yingxiu-Beichuan fault and Guanxian-Anxian fault in this paper, energy released centrally is about 7.67×1012 J, equivalent to that for occurrence of an earthquake with MS5.39.
-
Keywords:
- stress increment /
- strain energy /
- Longmenshan fault zone /
- numerical simulation
-
-
表 1 模型岩体物理力学参数
Table 1 Physico-mechanical parameters for rock mass of the numerical model
弹性模量/GPa 抗拉强度
/MPa内聚力
/MPa摩擦角
/°泊松比 密度
/(103 kg·m−3)重力加速度
/(m·s−2)断层面 地表 底部 法向刚度/GPa 切向刚度/GPa 摩擦角/° 40 106 12 16 35 0.286 2 650 9.8 1 0.5 10 -
邓起东,陈社发,赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,16(4):389–403. Deng Q D,Chen S F,Zhao X L. 1994. Tectonics,seismicity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology,16(4):389–403 (in Chinese).
付碧宏,时丕龙,张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报,82(12):1679–1687. doi: 10.3321/j.issn:0001-5717.2008.12.005 Fu B H,Shi P L,Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica,82(12):1679–1687 (in Chinese).
傅征样, 刘桂萍. 1999. 海原大地震可能触发古浪大地震的力学机制[C]//中国地震学会成立20周年纪念文集. 北京: 中国地震学会: 234−243. Fu Z X, Liu G P. 1999. The mechanism of great Gulang earthquake triggered probably by the great Haiyuan earthquake[C]//Proceedings of the 20th Anniversary Collection of the Chinese Seismological Society. Beijing: Seismological Press: 234−243 (in Chinese).
赖锡安,许菊生,卓力格图,刘经南,施闯,姜卫平. 2000. 中国大陆主要构造块体现今运动的基本特征[J]. 中国地震,16(3):213–222. doi: 10.3969/j.issn.1001-4683.2000.03.003 Lai X A,Xu J S,Zhuoli G T,Liu J N,Shi C,Jiang W P. 2000. The fundamental characteristics of principal tectonic blocks present movement in Chinese mainland[J]. Earthquake Research in China,16(3):213–222 (in Chinese).
刘成利,郑勇,葛粲,熊熊,许厚泽. 2013. 2013年芦山7.0级地震的动态破裂过程[J]. 中国科学:地球科学,43(6):1020–1026. Liu C L,Zheng Y,Ge C,Xiong X,Xu H Z. 2013. Rupture process of the MS7.0 Lushan earthquake,2013[J]. Science China Earth Sciences,56(7):1187–1192. doi: 10.1007/s11430-013-4639-9
屈勇,朱航. 2017. 巴颜喀拉块体东—南边界强震序列库仑应力触发过程[J]. 地震研究,40(2):216–225. doi: 10.3969/j.issn.1000-0666.2017.02.007 Qu Y,Zhu H. 2017. Coulomb stress triggering process of major earthquake sequence in the eastern and southern boundaries of the Bayan Har block[J]. Journal of Seismological Research,40(2):216–225 (in Chinese).
沈明荣, 陈建峰. 2006. 岩体力学[M]. 上海: 同济大学出版社: 52−54. Shen M R, Chen J F. 2006. Rock Mass Mechanics[M]. Shanghai: Tongji University Press: 52−54 (in Chinese).
师皓宇,马念杰. 2018. 龙门山断裂带及附近区域地貌形成与地应力演化机制研究[J]. 地震学报,40(3):332–340. Shi H Y,Ma N J. 2018. Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions[J]. Acta Seismologica Sinica,40(3):332–340 (in Chinese).
师皓宇,马念杰,马骥. 2018. 龙门山断裂带形成过程及其地应力状态模拟[J]. 地球物理学报,61(5):1817–1823. doi: 10.6038/cjg2018L0386 Shi H Y,Ma N J,Ma J. 2018. Numerical simulation for the formation process of the Longmenshan fault zone and its crustal stress state[J]. Chinese Journal of Geophysics,61(5):1817–1823 (in Chinese).
陶玮,胡才博,万永革,沈正康,王康. 2011. 铲形逆冲断层地震破裂动力学模型及其在汶川地震研究中的启示[J]. 地球物理学报,54(5):1260–1269. doi: 10.3969/j.issn.0001-5733.2011.05.015 Tao W,Hu C B,Wan Y G,Shen Z K,Wang K. 2011. Dynamic modeling of thrust earthquake on listric fault and its inference to study of Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(5):1260–1269 (in Chinese).
万永革,吴忠良,周公威,黄静,秦立新. 2002. 地震应力触发研究[J]. 地震学报,24(5):533–551. doi: 10.3321/j.issn:0253-3782.2002.05.011 Wan Y G,Wu Z L,Zhou G W,Huang J,Qin L X. 2002. Research on seismic stress triggering[J]. Acta Seismologica Sinica,24(5):533–551 (in Chinese).
王连捷,崔军文,周春景,孙东生,王薇,唐哲民,钱华山. 2009. 汶川5·12地震发震机理的数值模拟[J]. 地质力学学报,15(2):105–113. doi: 10.3969/j.issn.1006-6616.2009.02.001 Wang L J,Cui J W,Zhou C J,Sun D S,Wang W,Tang Z M,Qian H S. 2009. Numerical modeling for Wenchuan earthquake mechanism[J]. Journal of Geomechanics,15(2):105–113 (in Chinese).
王卫民,赵连锋,李娟,姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报,51(5):1403–1410. doi: 10.3321/j.issn:0001-5733.2008.05.013 Wang W M,Zhao L F,Li J,Yao Z X. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,51(5):1403–1410 (in Chinese).
温韬,唐辉明,刘佑荣,王康,杨呈刚. 2016. 不同围压下板岩三轴压缩过程能量及损伤分析[J]. 煤田地质与勘探,44(3):80–86. doi: 10.3969/j.issn.1001-1986.2016.03.015 Wen T,Tang H M,Liu Y R,Wang K,Yang C G. 2016. Energy and damage analysis of slate during triaxial compression under different confining pressures[J]. Coal Geology &Exploration,44(3):80–86 (in Chinese).
谢和平,鞠杨,黎立云. 2005a. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,24(17):3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001 Xie H P,Ju Y,Li L Y. 2005a. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,24(17):3003–3010 (in Chinese).
谢和平,彭瑞东,鞠杨,周宏伟. 2005b. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,24(15):2603–2608. doi: 10.3321/j.issn:1000-6915.2005.15.001 Xie H P,Peng R D,Ju Y,Zhou H W. 2005b. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,24(15):2603–2608 (in Chinese).
熊魂,付小敏,王从颜,宾婷婷,沈忠,黄兴建. 2015. 砂岩在不同围压条件下变形特征的试验研究[J]. 中国测试,43(3):113–116. doi: 10.11857/j.issn.1674-5124.2015.03.026 Xiong H,Fu X M,Wang C Y,Bin T T,Shen Z,Huang X J. 2015. Experimental study of sandstone under different confining pressure deformation characteristics[J]. China Measurement &Testing,43(3):113–116 (in Chinese).
许才军,汪建军,熊维. 2018. 地震应力触发回顾与展望[J]. 武汉大学学报(信息科学版),43(12):2085–2092. Xu C J,Wang J J,Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University,43(12):2085–2092 (in Chinese).
许国安,牛双建,靖洪文,杨圣奇,王文龙. 2011. 砂岩加卸载条件下能耗特征试验研究[J]. 岩土力学,32(12):3611–3617. doi: 10.3969/j.issn.1000-7598.2011.12.013 Xu G A,Niu S J,Jing H W,Yang S Q,Wang W L. 2011. Experimental study of energy features of sandstone under loading and unloading[J]. Rock and Soil Mechanics,32(12):3611–3617 (in Chinese).
徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊1):151–162. Xu X W,Wen X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,46(S2):210–226.
徐芝纶. 1980. 弹性力学简明教程[M]. 北京: 人民教育出版社: 93−95. Xu Z L. 1980. Brief Course of Elastic Mechanics Theory[M]. Beijing: People’s Education Press: 93−95 (in Chinese).
颜照坤,李勇,赵国华,周荣军,李敬波,张威,郑立龙,李奋生,闫亮. 2014. 从龙门山地质地貌分段性探讨芦山地震与汶川地震的关系[J]. 自然杂志,36(1):51–58. Yan Z K,Li Y,Zhao G H,Zhou R J,Li J B,Zhang W,Zheng L L,Li F S,Yan L. 2014. The relationship between Lushan earthquake and Wenchuan earthquake by segmentation of geology and geomorphology of Longmen Shan[J]. Chinese Journal of Nature,36(1):51–58 (in Chinese).
张国民,田勤俭,王辉. 2003. 可可西里—东昆仑活动构造带强震活动研究[J]. 地学前缘,10(1):39–46. doi: 10.3321/j.issn:1005-2321.2003.01.005 Zhang G M,Tian Q J,Wang H. 2003. Strong earthquake activities in Kekexili-East Kunlun mountains active fault zone,Northwest China[J]. Earth Science Frontiers,10(1):39–46 (in Chinese).
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20. Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.
赵由佳,张国宏,单新建,尹昊,屈春燕. 2018a. 考虑地形起伏和障碍体破裂的汶川地震强地面运动数值模拟[J]. 地球物理学报,61(5):1853–1862. doi: 10.6038/cjg2018M0228 Zhao Y J,Zhang G H,Shan X J,Yin H,Qu C Y. 2018a. Numerical simulation of the strong ground motion of the 2008 Wenchuan earthquake incorporated with topography and barrier rupture model[J]. Chinese Journal of Geophysics,61(5):1853–1862 (in Chinese).
赵由佳,张国宏,张迎峰,单新建,屈春燕. 2018b. 基于连续-离散单元法的汶川地震动力学二维自发破裂全周期模拟研究[J]. 地震地质,40(1):12–26. doi: 10.3969/j.issn.0253-4967.2018.01.002 Zhao Y J,Zhang G H,Zhang Y F,Shan X J,Qu C Y. 2018b. Two-dimensional whole cycle simulation of spontaneous rupture of the 2008 Wenchuan earthquake using the continuous-discrete element method[J]. Seismology and Geology,40(1):12–26 (in Chinese).
朱守彪,张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究[J]. 地球物理学报,52(2):418–427. Zhu S B,Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake,2008[J]. Chinese Journal of Geophysics,52(2):418–427 (in Chinese).
朱维申,李术才,程峰. 2001. 能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J]. 岩土工程学报,23(3):333–336. doi: 10.3321/j.issn:1000-4548.2001.03.016 Zhu W S,Li S C,Cheng F. 2001. Application of energy dissipation model to optimization of construction order for large underground caverns[J]. Chinese Journal of Geotechnical Engineering,23(3):333–336 (in Chinese).
Bridgman P W. 1945. Polymorphic transitions and geological phenomena[J]. Am J Sci,243(2):90–97.
Dahlen F A. 1977. The balance of energy in earthquake faulting[J]. Geophys J R astr Soc,48(2):239–261. doi: 10.1111/j.1365-246X.1977.tb01298.x
Gudmundsson A. 2014. Elastic energy release in great earthquakes and eruptions[J]. Front Earth Sci,2:10.
Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res,103(B10):24347–24358.
Kilb D,Gomberg J,Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature,408(6812):570–574. doi: 10.1038/35046046
Meade B J. 2007. Present-day kinematics at the India-Asia collision zone[J]. Geology,35(1):81–84. doi: 10.1130/G22924A.1
Reid H F. 1910. Mechanics of the Earthquake, the California Earthquake of April 18, 1906[R]. Washington DC: Carnegie Institution of Washington: 192.
Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. Cambridge: Cambridge University Press: 504.
Stein R S,Barka A A,Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophys J Int,128(3):594–604. doi: 10.1111/gji.1997.128.issue-3
Velasco A A,Hernandez S,Parsons T,Pankow K. 2008. Global ubiquity of dynamic earthquake triggering[J]. Nat Geosci,1(6):375–379. doi: 10.1038/ngeo204
Wan Y G,Shen Z K,Burgmann R,Sun J B,Wang M. 2017. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan,China earthquake,inferred from GPS and InSAR measurements[J]. Geophys J Int,208(2):748–766. doi: 10.1093/gji/ggw421
Wang Q,Qiao X J,Lan Q G,Freymueller J,Yang S M,Xu C J,Yang Y L,You X Z,Tan K,Chen G. 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nat Geosci,4(9):634–640. doi: 10.1038/ngeo1210