青藏高原中东部地壳和上地幔顶部P波层析成像

张戈铭, 李细兵, 郑晨, 宋晓东

张戈铭, 李细兵, 郑晨, 宋晓东. 2019: 青藏高原中东部地壳和上地幔顶部P波层析成像. 地震学报, 41(4): 411-424. DOI: 10.11939/jass.20190003
引用本文: 张戈铭, 李细兵, 郑晨, 宋晓东. 2019: 青藏高原中东部地壳和上地幔顶部P波层析成像. 地震学报, 41(4): 411-424. DOI: 10.11939/jass.20190003
Zhang Geming, Li Xibing, Zheng Chen, Song Xiaodong. 2019: Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography. Acta Seismologica Sinica, 41(4): 411-424. DOI: 10.11939/jass.20190003
Citation: Zhang Geming, Li Xibing, Zheng Chen, Song Xiaodong. 2019: Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography. Acta Seismologica Sinica, 41(4): 411-424. DOI: 10.11939/jass.20190003

青藏高原中东部地壳和上地幔顶部P波层析成像

基金项目: 国家自然科学基金(41774056,41704046)资助
详细信息
    通讯作者:

    宋晓东: e-mail:xiao.d.song@gmail.com

  • 中图分类号: P315.2

Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography

  • 摘要: 为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。
    Abstract: Based on joint inversion with 14 484 P-wave (Pg and Pn) first arrival times, we obtained regional 3-D P velocity structure beneath the central-eastern Tibetan Plateau, including crustal P velocity, uppermost mantle P (Pn) velocity, and Moho depth. The results show that the crustal P velocity ranges from 5.2 to 7.2 km/s, the Pn velocity ranges from 7.7 to 8.4 km/s, and the crustal thickness ranges from 48.0 to 68.6 km. The crustal and uppermost mantle structure is strongly heterogeneous, which generally correlates with geologic blocks. The crustal P velocity structure shows that prominent low velocity zones exist in the middle and lower crust. There are great difference in the distribution of high and low velocity anomalies between upper crust and mid-lower crust. High velocity anomalies primarily exist in the upper crust of the Qiangtang block and the Baryan Har block, while become lower as depth increases. The Qaidam basin shows low velocity anomaly in the upper crust while high in the lower crust. High Pn velocity exists in the Qaidam basin and the Lhasa block with a maximum velocity of about 8.4 km/s, while the Baryan Har block and the Qiangtang block mainly show low Pn velocity anomalies, which reach as low as 7.7 km/s. Crustal thickness is mainly characterized by thick in the south and thin in the north. The crust is thicker in the eastern Qiangtang block and the Lhasa block, while thinner in the Qaidam basin, the eastern Baryan Har block and the western part of the Qiangtang block, which shows the characteristics of lithospheric deformation due to the northward subduction from the Indian Plate to the Eurasian Plate.
  • 地震能引起地下水位、水温以及水化学组成的变化(Ren et al,2012Weingarten,Ge,2014Sun et al,2015)。关于地下水位、水温的震后效应特征及其机理的研究越来越受到国内外研究人员的关注。Manga等(2012)认为地震波不仅能引起井水位水震波,还可改变井-含水层系统的渗透性;刘耀炜等(2005)总结了大陆地下台网对2004年12月26日及2005年3月29日印尼苏门答腊地震的水位与水温的同震响应及震后效应特征;孙小龙和刘耀炜(2008)收集了北京塔院井一井多震的水位和水温同震响应及震后效应资料,并探讨了其响应机理;向阳等(2017)利用新10井水震波数据研究井水位同震响应特征;很多研究人员还利用多井的水位-水温资料,提出了同震响应及震后效应机制(鱼金子等,1997陈大庆等,2007石耀霖等,2007)。

    地热水孕育和贮存在热储中,与常温地下水贮存的普通含水层具有截然不同的地球化学环境(刘颖超等,2015)。监测地热温泉井各水文地球化学测项的变化是地震地下流体前兆观测手段之一,而且,关于温泉井的地震前兆变化和同震响应的震例很多(Nishizawa et al,1998刘耀炜等,2015Chen et al,2015)。随着观测资料的不断积累和研究的继续深入,很多研究人员注意到了水氡的同震响应及震后效应现象,水氡异常机制的研究也引起了国内外很多科研人员的关注,目前比较认可的有岩石微破裂产生的氡射气、超声振动机制、水动力学异常成因机制等(车用太等,1997)。

    庐江地热温泉1号井在远场强震后,水氡出现明显的震后效应,而且在震后效应持续或者结束后,安徽及邻区有中强地震发生。因此,本文通过采集郯庐断裂带沿线地震观测井、地表水体和温泉区其它温泉井的水样,利用水文地球化学方法,开展水样的离子、同位素等分析,试图对庐江地热温泉1号井水氡的震后效应现象给予更合理的解释。

    庐江地热温泉区位于郯庐断裂带与大别造山带交会部位,共有1号、3号、7号、11号4口地热温泉井,其中1号地热温泉井为地震前兆观测井,于1986年开始使用FD-125测氡仪正式观测水氡测项,水氡测值为10 Bq/L左右。数次大震中,例如1999年9月21日我国台湾集集MS7.6地震、2004年12月26日印尼MS8.7地震、2008年5月12日汶川MS8.0地震和2011年3月11日日本本州岛MS9.0地震,庐江地热温泉1号井水氡测值均出现明显的震后效应,氡值上升最大幅度分别为16%,38%,25%和24%。在异常持续或结束后,安徽及邻区均有中强地震发生,例如:1999年台湾集集地震后,庐江水氡高值期间,安徽利辛于12月30日发生MS4.1地震;2004年印尼MS8.7地震后,九江于2005年11月26日发生MS5.7地震;汶川地震水氡异常结束后,安徽肥东于2009年4月6日发生MS3.5地震;2011年日本MS9.0地震后,安徽桐城于2011年6月17日发生MS3.7地震(图1表1)。庐江1号温泉井远场强震水氡出现异常,辅助测项水位、水温也出现同步变化(图2)(陶月潮,2010)。对应的中强地震除了利辛MS4.1地震外,其它3次地震震中均位于郯庐断裂带上(图3)。

    图  1  庐江地震台1号地热温泉井水氡曲线图
    Figure  1.  Radon change of L01 geothermal hot spring well in Lujiang seismic station
    图  2  庐江地震台1号地热温泉井远场强震辅助测项变化曲线图
    Figure  2.  Auxiliary test item change for far field strong earthquakes of L01 geothermal hot spring well in Lujiang seismic station
    图  3  断裂、温泉采样点及对应的地震分布图
    F1:嘉山—庐江断裂;F2:池河—太湖断裂;F3:朱顶—石门山断裂;F4:五河—合肥断裂
    Figure  3.  Locations of faults,sampling sites and earthquakes that caused hydrological changes
    F1:Jiashan-Lujiang fault;F2:Chihe-Taihu fault;F3:Zhuding-Shimenshan fault;F4:Wuhe-Hefei fault
    表  1  庐江地震台1号地热温泉井水氡远场强震异常及对应地震
    Table  1.  Radon abnormal changes triggered by teleseism for the L01 geothermal hot spring well within Lujiang seismic station and its corresponding earthquakes
    远场强震异常
    类型
    异常
    幅度
    异常滞后
    时间/d
    震中距/km其它测项异常持续
    时间/d
    对应地震时间间
    隔/d
    发震日期地点MS发震日期发震
    地点
    MS
    1999−09−21集集7.6上升16%0 879水位上升
    水温下降
    3671999−12−30利辛4.1100
    2004−12−26印尼8.7上升38%1839001852005−11−26九江5.7325
    2008−05−12汶川8.0上升25%81233水位上升
    水温下降
    1352009−04−06肥东3.5329
    2011−03−11日本9.0上升24%02473水位上升
    水温下降
    2452011−06−17桐城3.7 98
    下载: 导出CSV 
    | 显示表格

    地热温泉1号井井深为327 m,破碎带位于107.81—111.7 m和291.8—306 m,在90—185 m范围内分布3个含水层,290—300 m有1个含水层。抽水试验表明,在42.83—105.25 m贮水系数和水力传导率最大,分别为1.46 L/(s·m)和3.096 m/d。水样测试结果显示,该井地下水类型为Na-SO4,总溶解固体(total dissolved solids,缩写为TDS)、PH值及硬度分别约为1.15 g/L,8.3和0.89 mmol/L。

    水氡的观测采用FD-125型氡钍分析器及配套的HW-3204定标器。每日上午8时左右定时用统一规格的玻璃扩散器负压取样,经过鼓泡、脱气,将水样中的氡气送入闪烁室,222Rn衰变产生α粒子,撞击闪烁室内表面覆盖有80 mg/cm2厚的ZnS(Ag)产生光子,光子通过光电倍增管转换成脉冲电压,脉冲电压再通过前置放大器被放大,之后将氡气密封静置1小时后通过定标器计算脉冲频率N,再通过式(1)换算成氡浓度,即

    $C {\text{=}} \frac{{K{\text{(}}N {\text{-}} {N_0}{\text{)}}}}{{V \cdot {{\rm{e}}^{ {\text{-}} \lambda t}}}}{\text{,}}$

    (1)

    式中,K为闪烁室标准值,N0为闪烁室背景脉冲频率,V为水样体积,eλt为氡的衰变常数。

    庐江地热温泉1号井(31°20′N,117°05′E)位于郯庐断裂带与大别造山带交会部位。郯庐断裂带在安徽境内自西而东由五河—合肥断裂F4、朱顶—石门山断裂F3、池河—太湖断裂F2、嘉山—庐江断裂F1组成,其中,断裂F4F3自五河县城向南消失于大别造山带北部北淮阳地区(朱光等,2001)。在温泉区主要有东界嘉山—庐江断裂F1和西界池河—太湖断裂F2F1F2之间发育的大量伴生断层(高维明,郑朗荪,1991)。东界断层走向为35°—50°,倾向为NW向,倾角较陡,一般在±85°,断层带出露宽度一般为150 m,以强烈左行平移为主要运动学特征。西界断层走向为35°—45°,倾向为E向,倾角为65°—87°,由数条平行的断层组合而成,宽近百米,揭示其左行平移和多期活动的性质(宋传中等,1998)。大别造山带上发育有多条NW向断层切割F2,庐江地热温泉区位于F2与NW向梅山—龙河口断裂F5交会处(图3)。

    温泉井所在的东汤池地热田位于新华夏系第二隆起带,属于中生代岩浆活动地区,为大别山的延伸地带,位于马槽河西侧一级阶地后缘。东汤池地热田东、南、西三面环山,北面为平坦的畈田,呈一低山区的剥蚀地形。温泉井地区原天然温泉露头区呈长轴近似为N50°—60°E的椭圆形,地热田长约为150 m,宽约为80 m,热田分布范围不大。根据断层的运动学特征分析,NW向张扭性构造是热水向上运移的良好通道,NNE向压性构造则起到阻水的作用。两组断裂在东汤池交会,使热水沿着构造断裂上升,形成小范围的泉群。

    为了对比分析庐江地热温泉1号井水体与郯庐断裂带沿线温泉井及地震观测井等水体的水文地球化学特征的差异性,项目组于2019年7月4日至7日沿郯庐断裂带分别在五河井、女山井、巢湖井、庐江温泉井、庐江金汤水库、舒城站采用溢流法采集了9个样品(图3),庐江1号井、3号井、7号井、11号井、舒城站、巢湖井为地热温泉,庐江金汤水库为地表水样品,五河井和女山井为地下水样品。地震观测井通过深井取样器采集深层样品。He同位素检测使用玻璃取样瓶,其它检测样品容器使用塑料取样瓶,样品容器用去离子水清洗,瓶盖为带螺旋的塑料盖,瓶口处用封口膜密封使之与空气隔绝(方震等,2015)。

    样品的水化学、同位素项目在应急管理部国家自然灾害防治研究院的地壳动力学重点实验室测定,水化学分析设备为ICS-2000离子色谱仪,氢氧同位素分析设备为液态水同位素分析仪(LGR912-0008);SiO2在华东冶金地质勘查局中心实验室测定,分析设备为WYS-2000原子吸收分光光度计;样品的氦和氖同位素由中国科学院地质与地球物理研究所兰州油气资源研究中心测试,分析设备为MM5400质谱计。样品的水化学测试结果列于表2

    表  2  水样测试结果
    Table  2.  Test results of water samples
    样品名编号PHρ/(mg·L−1水化学类型
    TDSK+Na+Ca2+Mg2+Fe3+ClSO42−HCO3NO3SiO2
    1号井 L01 7.00 1078.60 69.23 277.22 24.42 0.12 0.01 52.23 570.90 95.14 8.4 55.65 Na-SO4
    3号井 L03 7.10 545.40 3.35 153.25 22.83 0.15 0.10 57.48 213.50 107.61 4.8 24.75 Na-SO4-HCO3-Cl
    7号井 L07 7.00 994.25 17.51 288.83 20.38 0.29 0.05 50.49 215.40 107.55 8.2 47.94 Na-SO4
    11号井 L11 7.20 300.15 2.42 93.22 5.62 0.07 0.12 17.96 81.03 129.13 6.0 20.72 Na-HCO3-SO4
    庐江水库 LR 9.49 1.16 9.48 14.96 2.56 6.15 27.05 36.61 17.80 Ca-Na-HCO3-SO4
    舒城站 SC 7.00 1398.40 21.06 319.26 100.60 0.21 0.03 51.49 931.30 37.23 7.45 58.71 Na-Ca-SO4
    巢湖井 CH 11.58 32.81 585.25 5.03 6.03 1457.77 Ca-SO4
    五河井 WH 7.87 0.82 52.81 45.32 18.24 17.97 45.36 395.39 0.08 Na-Ca-Mg-HCO3
    女山井 NS 8.18 2.77 89.91 12.73 10.83 17.80 2.57 292.88 0.77 Na-HCO3
    注:“—”表示低于检测限,ρ表示物质的浓度。
    下载: 导出CSV 
    | 显示表格

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  4  主要离子的派珀三线图
    Figure  4.  Piper graph of major ions

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    图  5  水样中氯离子与钠离子浓度、离子比例及SiO2浓度的变化关系
    Figure  5.  Plots of sodium concentration,ion ratios,silicon dioxide versuschloridion concentration in these water samples

    地热流体中的SiO2主要来自围岩,热储温度越高,从围岩中溶解的SiO2越多。而温度的冷却过程造成SiO2的沉淀析出是一个及其缓慢的过程,因此,SiO2常被用于计算热储层的温度。图5d为地热水中ρ(SiO2)随ρ(Cl)的变化关系图,可以看出,除了L03井以外,L01,L07,L11和SC井热水中ρ(SiO2)与ρ(Cl)正相关,温度越高,地热水中ρ(SiO2)越高,L01,L03,L07,L11和SC井采样温度分别为63.5 ℃,63.3 ℃,42 ℃,42 ℃和65.2 ℃。L03井与L01井和SC井相比,虽然地表出露温度相差不大,但地热水中的ρ(SiO2)较低;L11井与L07井相比,地热水中ρ(SiO2)较低。上述数据表明,L03井相较于L01井和SC井,地表冷水混入地下热水比例较低或者热源埋深较浅,同样,L07井相较于L11井,出露温度相当,但L11井地热水中的ρ(SiO2)较低,说明L11井相较于L07井,地表冷水混入地下热水比例较高或者热源埋深较深。通过地热水中SiO2含量分析表明,L01,L07和SC井地热流体的热源埋深可能较深,L03井的热源埋深较浅,L11井与L07井出露温度相当,但L11井地热水中的ρ(SiO2)较低,进一步印证了L11井地表冷水混入的比例较大。

    人们通常利用氢氧同位素来有效示踪地下水循环过程。其原理是在水循环过程中同位素组成不同,从而可用来识别地下水的来源、运移路径及其演化机制等(苏鹤军等,2010)。主要研究方法是与当地大气雨水线对比分析法和氦同位素分析法。表3为样品的同位素测值。

    表  3  样品同位素测试结果
    Table  3.  Isotope test results of water samples
    样品名编号δDδ18O3He/4HeHe/10−64He/20Ne
    1号井 L01 −64.122 6‰ −10.046 6‰ 2.03×10−7 5333.3 123.39
    3号井 L03 −60.521 3‰ −9.210 6‰ 2.06×10−7 554.0 18.16
    7号井 L07 −60.486 0‰ −9.163 3‰
    11号井 L11 −62.305 4‰ −9.768 2‰ 1.60×10−7 841.5 46.18
    庐江水库 LR −34.043 3‰ −6.371 5‰
    舒城站 SC −62.986 7‰ −9.821 5‰ 5.85×10−7 1867.8 107.29
    巢湖井 CH −57.945 3‰ −8.591 0‰ 1.70×10−6 45.0 2.66
    五河井 WH −45.847 5‰ −6.832 3‰ 4.09×10−7 17.4 1.06
    女山井 NS −49.814 2‰ −7.322 2‰
    注:“−”表示未检测,氦含量指在气体中的体积比。
    下载: 导出CSV 
    | 显示表格

    根据测定的9个温泉井水样品的氧、氢同位素的结果可以看出,δ18O变化范围介于−6.37‰—−10.04‰之间,δD变化范围介于−34.04‰—−64.12‰之间。把这些数据投在δD-δ18O图上,拟合方程为δD=6.64δ18O+0.99 (r=0.88),与区域大气降水线(王涛等,2013)和全球大气降水线(Craig,1961)均不吻合,且庐江水库水样(LR)偏离拟合直线,说明地热温泉水除了大气降水补给还存在其它补给源。由图6可以看出,温泉水(L01,L03,L07,L11,SC,CH)与地震观测井(WH,NS)和地表水(LR)的氢氧同位素处在图6的不同端元,说明其补给来源不同,庐江地热温泉与庐江水库之间的补给关系不明显。

    图  6  水样的氢氧稳定同位素与大气降水线的关系图
    Figure  6.  Relationship between hydrogen and oxygen isotopes in water samples and meteoric water line

    温泉井δD值和δ18O均低于地震观测井和地表水,这是地下水深循环过程产生的同位素物理分馏的结果。庐江温泉井与SC井的水样位于全球大气降水线(global meteroric water line,缩写为GMWL)与地区大气降水线(local meteoric water line,缩写为LMWL)的左上方,这一现象可能与CO2低温交换和不同地下水混合的共同作用有关(张磊等,2016)。地下水和CO2间的同位素交换作用,导致样品在图6中向左平移(李学礼等,2010)。庐江地热温泉井东、南、西三面环山,北面为平坦的畈田,呈一低山区的剥蚀地形,区内断裂纵横交错,是地下水运移的泄流区,构造活动疏通裂隙,引起含水层间渗透性增强,不同性质的地下水进行了混合也能引起水样的氢氧同位素向左平移。

    氦同位素是用来判断地下流体气源与构造活动的又一个有效示踪标志(苏鹤军等,2010),氦有两个同位素,分别为3He和4He。已有研究表明,在地球的不同圈层,3He和4He的丰度有显著的差别,其特征值分别为大气储库(3He/4He=1.4×10−6)、地壳储库(3He/4He<10−7)和地幔储库[3He/4He=(1.1—1.4)×10−5](孙小龙等,2016)。图7为水样氦含量及其3He/4He比值,所有样品的氦含量均高于空气中的氦含量5.24×10−6,其中L01水样氦含量最高,达到5333.3×10−6,其次为SC水样,氦含量高达1867.8×10−6;CH水样的3He/4He比值高于空气值,其它水样的3He/4He比值均低于空气值,由图7可知,9个样品中氦均含有深部来源特征,CH水样含有幔源气体,循环深度较深,其它水样表现出含有壳源气体的特征。

    图  7  水样的氦同位素测值
    Figure  7.  Helium isotope of water sample

    样品中4He/20Ne的值介于1.06—123.39,最大值为L01井水样,高达123.39,其次为SC井水样,4He/20Ne为107.29,远远大于大气的特征值0.288 (Ballentine,O’Nions,1992),计算得出大气的贡献率为0.23%—27%,平均贡献率为7.6%,表明温泉井大气成因的氦可以忽略不计。样品中3He/4He的变化范围较大,为1.60×10−7—1.70×10−6图8为样品的3He/4He比值和4He/20Ne比值分布图,可以看出,L01井、SC井与L03井、L11井分布于不同的端元,根据幔源氦典型值(1.1—1.4)×10−5和壳源氦典型值2×10−8,计算得出L01井和SC井的水样壳源氦贡献率约为1.8%,L03井和L11井水样的壳源氦贡献率约为1.5%。

    图  8  水样的3He/4He和4He/20Ne比值图
    Figure  8.  3He/4He and 4He/20Ne ratios of water sample

    利用三线图和三角图分析地下水化学组分分布的分区分带,以及地下水类型、成因和来源,判定地下水的水-岩相互作用程度,(Piper,1944Giggenbach,1988)。Na-K-Mg三角图方法是基于Na-K和K-Mg地温计建立的,可用于评价水-岩系统平衡并区分不同类型水样。

    Na-K-Mg三角图如图9所示,结果显示LR,CH,WH和NS水样落在Mg端元附近,为“未成熟水”,表明其水-岩相互作用尚未平衡,水-岩相互作用仍在进行,地下水循环周期相对较快;L01,L03,L07,L1和SC井水样属于部分成熟水或混合水,显示部分水-岩作用已达到平衡,地下热水循环深度较深,或地表水混合较小等。依据Na-K-Mg温标线(图中绿色实线)的指示,L01,L03,L07,L11,SC观测井地下水的热储温度分别为300 ℃,140 ℃,160 ℃,200 ℃,200 ℃,若以25 ℃/km的地壳平均垂向地温梯度计算(孙小龙等,2016),其地下水的循环深度分别应在12,6,7,8,8 km以下。

    图  9  水样Na-K-Mg三角图
    Figure  9.  Na-K-Mg triangular diagram of the water samples

    通过地球化学的方法,采集了庐江温泉地热井、周边地热井、浅层地下水及地表水水样,进行水化学组分、氢氧同位素、氦同位素等研究,尝试分析庐江地震台1号井远场强震同震响应机理,得出以下认识:

    1) L01,L07和SC井热水具有较深的热源埋深,显示地热流体可能为深部岩浆来源,L03井热源埋深较浅,L11井地表冷水混入比例较大。

    2) 温泉井的同位素特征及K-Na-Mg三角图揭示,庐江、舒城地热温泉井水样具有壳源特征,L01,SC水样壳源氦贡献率约为1.8%,L01井地下水的热储温度在12 km以下,循环深度最深,反映出较多的深部构造活动信息。

    通常认为,同震响应是由于地震波导致部分岩石发生局部破裂或产生断层蠕动,使差应力大幅度释放,引起孔隙压力的变化,或者是区域应力调整改变了含水层的渗透性,从而对渗流过程产生影响所致,前提都是存在区域构造活动(赵利飞等,2002Claesson et al,2007张磊等,2014)。区域构造活动改变了断层的封闭性,驱动流体的流动,引起地下水组分的变化(Claesson et al,2004Woith et al,2013刘耀炜等,2015)。原因主要有两种,一是地震活动过程中含水层的挤压破裂,增加了地下水与新出露矿物表面的接触,水岩反应作用增强,导致地下水中的离子、气体等浓度变化;二是地震活动引起含水层水文地质参数的变化,如渗透率的变化,不同性质的地下水进入含水层,引起含水层化学成分的变化(Thomas,1988刘耀炜等,2015)。

    庐江地震台1号井水氡远场强震出现震后效应,而周边观测井流体测项,尤其是水氡,未出现异常变化,表明强震发生引起的区域构造活动较弱,较弱的区域构造活动改变含水层岩体的应力水平,从而改变水流状态,引起水氡浓度的变化(车用太等,1997),而庐江1号井温泉水热源埋深较深,Ma等(2018)通过固体潮相位的变化,认为该井是以垂向补给为主。庐江地震台1号井位于郯庐断裂带深大断裂上,远场强震的地震波引起的区域构造活动较弱,庐江地震台1号井的热源埋深较深,在12 km以下,垂向补给导致深部热源补给,产生水氡上升的同震响应,而周边温泉井或地热观测井由于热源埋深较浅或者以横向补给为主,未出现远场强震震后效应现象。

    流体触发局部地震活动是地震的又一诱因(蒋海昆等,2011),远场强震地震波的作用,改变了郯庐断裂带区域构造应力的活动水平,流体沿郯庐断裂破碎带和裂隙渗透,导致地下裂隙、断层及孔隙介质中的孔隙压力增大,断层、裂隙强度随之降低,流体触发作用随之增强,从而加速区域中强地震孕育(龙政强等,2014),触发断裂沿线中小地震的发生。

    水氡对远场强震的响应较为复杂,其机理也不尽相同,仍需研究人员不断探索。本文从温泉井、地震观测井及地表水体水文地球化学特征的角度尝试给出水氡远场强震同震响应作出合理的解释,是一种新的尝试,但结果是初步的,还需要在今后的工作中积累更多的资料,从多个角度进一步论证。

  • 图  1   研究区地质概况及各台网台站分布

    Figure  1.   Topography of the study region and distribution of stations of seismic networks

    图  2   2008年12月18日ML5.1地震事件的初至波走时拾取效果

    该事件的震中位置为(96.47°E,36.78°N),震源深度为0 km,相对走时为每条地震记录相对于初至波的走时

    Figure  2.   First arrival time picks from an ML5.1 earthquake on December 18,2008

    The epicentre of the event is (96.47°E,36.78°N) with a focal depth of 0 km. Travel times are relative to first arrivals

    图  3   一维模型及其初始模型

    Figure  3.   One-dimensional model and its initial model

    图  4   联合反演射线覆盖

    Figure  4.   Ray coverage of joint inversion

    图  5   联合反演的残差分析和走时分布

    (a) 反演前后走时残差随震中距的分布;(b) 反演前后各震中距范围内走时残差的标准差分布;(c) 联合反演前后走时残差数量分布及其高斯分布拟合曲线;(d) 折合走时(td/0.065)分布

    Figure  5.   Residual analysis and travel time distribution of joint inversion

    (a) Travel time residual distribution before and after inversion;(b) Standard deviations of travel time residuals with different epicentral distance before and after inversion;(c) Histogram of residuals and its Gaussian distribution fitting before and after inversion;(d) Reduced time by 0.065 degree per second

    图  6   1.5°×1.5°网格下的检测板检测

    Figure  6.   Checkerboard test with squares of 1.5 degree by degree

    图  7   地壳Pg波速度结构和上地幔顶部Pn波速度结构

    各子图右下角给出了相应深度的P波平均速度,速度扰动相对于该层平均速度

    Figure  7.   Velocity structure of Pg and Pn waves

    The velocity perturbation in each layer is related to the average velocity given in the lower-right corner of the sub-figures

    图  8   青藏高原中东部的莫霍面深度分布

    Figure  8.   Distribution of Moho depth of the central-eastern Tibetan Plateau

  • 邓起东,程绍平,马冀,杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报,57(7):2025–2042. doi: 10.6038/cjg20140701

    Deng Q D,Cheng S P,Ma J,Du P. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics,57(7):2025–2042 (in Chinese).

    范文渊,陈永顺,唐有彩,周仕勇,冯永革,岳汉,王海洋,金戈,魏松峤,王彦宾,盖增喜,宁杰远. 2015. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报,58(5):1568–1583. doi: 10.6038/cjg20150510

    Fan W Y,Chen Y S,Tang Y C,Zhou S Y,Feng Y G,Yue H,Wang H Y,Jin G,Wei S Q,Wang Y B,Ge Z X,Ning J Y. 2015. Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics,58(5):1568–1583 (in Chinese).

    高锐,熊小松,李秋生,卢占武. 2009. 由地震探测揭示的青藏高原莫霍面深度[J]. 地球学报,30(6):761–773. doi: 10.3321/j.issn:1006-3021.2009.06.008

    Gao R,Xiong X S,Li Q S,Lu Z W. 2009. The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J]. Acta Geoscientica Sinica,30(6):761–773 (in Chinese).

    黄忠贤,李红谊,胥颐. 2013. 南北地震带岩石圈 S 波速度结构面波层析成像[J]. 地球物理学报,56(4):1121–1131. doi: 10.6038/cjg20130408

    Huang Z X,Li H Y,Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography[J]. Chinese Journal of Geophysics,56(4):1121–1131 (in Chinese).

    金胜,魏文博,汪硕,叶高峰,邓明,谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报,53(10):2376–2385.

    Jin S,Wei W B,Wang S,Ye G F,Deng M,Tan H D. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics,53(10):2376–2385 (in Chinese).

    李鹏,李振洪,施闯,冯万鹏,梁存任,李陶,曾琪明,刘经南. 2013. 大地水准面高对InSAR大范围地壳形变监测的影响分析[J]. 地球物理学报,56(6):1857–1867. doi: 10.6038/cjg20130608

    Li P,Li Z H,Shi C,Feng W P,Liang C R,Li T,Zeng Q M,Liu J N. 2013. Impacts of geoid height on large-scale crustal deformation mapping with InSAR observations[J]. Chinese Journal of Geophysics,56(6):1857–1867 (in Chinese).

    黎源,雷建设. 2012. 青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究[J]. 地球物理学报,55(11):3615–3624. doi: 10.6038/j.issn.0001-5733.2012.11.010

    Li Y,Lei J S. 2012. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan Plateau inferred from Pn tomography[J]. Chinese Journal of Geophysics,55(11):3615–3624 (in Chinese).

    王海洋,Hearn T,陈永顺,裴顺平,冯永革,岳汉,金戈,周仕勇,王彦宾,盖增喜,宁杰远,Sandvol E,Ni J. 2013. 青藏高原东部的Pn波层析成像研究[J]. 地球物理学报,56(2):472–480. doi: 10.6038/cjg20130211

    Wang H Y,Hearn T,Chen Y S,Pei S P,Feng Y G,Yue H,Jin G,Zhou S Y,Wang Y B,Ge Z X,Ning J Y,Sandvol E,Ni J. 2013. Pn wave tomography of eastern Tibetan Plateau[J]. Chinese Journal of Geophysics,56(2):472–480 (in Chinese).

    汪素云,许忠淮,裴顺平. 2003. 华北地区上地幔顶部Pn波速度结构及其构造含义[J]. 中国科学:D辑,33(B04):91–98.

    Wang S Y,Xu Z H,Pei S P. 2003. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications[J]. Science in China:Series D,46(S2):130–140.

    杨文采,侯遵泽,于常青. 2015. 青藏高原地壳的三维密度结构和物质运动[J]. 地球物理学报,58(11):4223–4234.

    Yang W C,Hou Z Z,Yu C Q. 2015. Three-dimensional density structure of the Tibetan Plateau and crustal mass movement[J]. Chinese Journal of Geophysics,58(11):4223–4234 (in Chinese).

    叶卓,高锐,李秋生,徐啸,黄兴富,熊小松,李文辉. 2018. 青藏高原向东挤出与向北扩展:高原隆升深部过程之探讨[J]. 科学通报,63(31):3217–3228.

    Ye Z,Gao R,Li Q S,Xu X,Huang X F,Xiong X S,Li W H. 2018. Eastward extrusion and northward expansion of the Tibetan Plateau:Discussions for the deep processes of the plateau uplift[J]. Chinese Science Bulletin,63(31):3217–3228 (in Chinese). doi: 10.1360/N972018-00478

    钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,60(6):2304–2314. doi: 10.6038/cjg20170622

    Zhong S J,Wu J P,Fang L H,Wang W L,Fang L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).

    Allmendinger R W,Reilinger R,Loveless J. 2007. Strain and rotation rate from GPS in Tibet,Anatolia,and the Altiplano[J]. Tectonics,26(3):TC3013. doi: 10.1029/2006TC002030

    Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830

    Bao X Y,Sandvol E,Ni J,Hearn T,Chen Y J,Shen Y. 2011. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophys Res Lett,38(16):L16304. doi: 10.1029/2011GL048012

    Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024

    Black P R,Braile L W. 1982. Pn velocity and cooling of the continental lithosphere[J]. J Geophys Res,87(B13):10557–10568. doi: 10.1029/JB087iB13p10557

    Ceylan S,Ni J,Chen J Y,Zhang Q,Tilmann F,Sandvol E. 2012. Fragmented Indian Plate and vertically coherent deformation beneath eastern Tibet[J]. J Geophys Res,117(B11):B11303. doi: 10.1029/2012JB009210

    Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res,120(3):1762–1786. doi: 10.1002/2014JB011638

    Chen M,Niu F L,Tromp J,Lenardic A,Lee CT A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8:15659. doi: 10.1038/ncomms15659

    Chen Z,Burchfiel B C,Liu Y,King R W,Royden L H,Tang W,Wang E,Zhao J,Zhang X. 2000. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. J Geophys Res,105(B7):16215–16227. doi: 10.1029/2000JB900092

    Chung S L,Liu D Y,Ji J Q,Chu M F,Lee H Y,Wen D J,Lo C H,Lee T Y,Qian Q,Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology,31(11):1021–1024. doi: 10.1130/G19796.1

    Garthwaite M C,Wang H,Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J Geophys Res,118(9):5071–5083. doi: 10.1002/jgrb.50348

    Godin L,Grujic D,Law R D,Searle M P. 2006. Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J]. Geological Society,London,Special Publications,268(1):1–23. doi: 10.1144/GSL.SP.2006.268.01.01

    Grujic D. 2006. Channel flow and continental collision tectonics:An overview[J]. Geological Society,London,Special Publications,268(1):25–37. doi: 10.1144/GSL.SP.2006.268.01.02

    Hao M,Freymueller J T,Wang Q L,Cui D X,Qin S L. 2016. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data[J]. Earth Planet Sci Lett,437:1–8. doi: 10.1016/j.jpgl.2015.12.038

    Harris N. 2007. Channel flow and the Himalayan-Tibetan orogen:A critical review[J]. J Geol Soc,164(3):511–523.

    Holt W E,Ni J F,Wallace T C,Haines A J. 1991. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. J Geophys Res,96(B9):14595–14632. doi: 10.1029/91JB01021

    Huang H H,Xu Z J,Wu Y M,Song X D,Huang B S,Nguyen L M. 2013. First local seismic tomography for Red River shear zone,northern Vietnam:Stepwise inversion employing crustal P and Pn waves[J]. Tectonophysics,584:230–239. doi: 10.1016/j.tecto.2012.03.030

    Huang Z C,Wang P,Zhao D P,Wang L S,Xu M J. 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China[J]. J Geophys Res,119(7):5686–5712. doi: 10.1002/2014JB010963

    Jiang C X,Yang Y J,Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth Planet Sci Lett,406:81–92. doi: 10.1016/j.jpgl.2014.08.040

    Koketsu K,Sekine S. 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with disconti-nuities[J]. Geophys J Int,132(2):339–346. doi: 10.1046/j.1365-246x.1998.00427.x

    Le Pape F,Jones A G,Vozar J,Wei W B. 2012. Penetration of crustal melt beyond the Kunlun fault into northern Tibet[J]. Nat Geosci,5(5):330–335. doi: 10.1038/ngeo1449

    Lei J S,Li Y,Xie F R,Teng J W,Zhang G W,Sun C Q,Zha X H. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan Plateau[J]. J Geophys Res,119(3):2174–2198. doi: 10.1002/2013JB010847

    Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosyst,17(5):1861–1884. doi: 10.1002/2016GC006262

    Lévěque J J,Rivera L,Wittlinger G. 1993. On the use of the checker-board test to assess the resolution of tomographic inversions[J]. Geophys J Int,115(1):313–318. doi: 10.1111/gji.1993.115.issue-1

    Li H Y,Li S,Song X D,Gong M,Li X,Jia J. 2012. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography[J]. Geophys J Int,188(1):131–143. doi: 10.1111/gji.2012.188.issue-1

    Li J T,Song X D. 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proc Natl Acad Sci USA,115(33):8296–8300. doi: 10.1073/pnas.1717258115

    Li X B,Song X D,Li J T. 2017. Pn tomography of South China Sea,Taiwan Island,Philippine archipelago,and adjacent regions[J]. J Geophys Res,122(2):1350–1366. doi: 10.1002/jgrb.v122.2

    Liang C T,Song X D. 2006. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography[J]. Geophys Res Lett,33(22):L22306. doi: 10.1029/2006GL027926

    Liang C T,Song X D,Huang J L. 2004. Tomographic inversion of Pn travel times in China[J]. J Geophys Res,109(B11):B11304. doi: 10.1029/2003JB002789

    Liu S,Hu R Z,Feng C X,Zou H B,Li C,Chi X G,Peng J T,Zhong H,Qi L,Qi Y Q,Wang T. 2008. Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane,northern Tibet:Geochemical and isotopic evidence for the origin of delaminated lower continental melts[J]. Geol Mag,145(4):463–474. doi: 10.1017/S0016756808004548

    Long X P,Wilde S A,Wang Q,Yuan C,Wang X C,Li J,Jiang Z Q,Dan W. 2015. Partial melting of thickened continental crust in central Tibet:Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang terrane[J]. Earth Planet Sci Lett,414:30–44. doi: 10.1016/j.jpgl.2015.01.007

    Lü Y,Ni S D,Chen L,Chen Q F. 2017. Pn tomography with Moho depth correction from eastern Europe to western China[J]. J Geophys Res,122(2):1284–1301. doi: 10.1002/jgrb.v122.2

    Mechie J,Zhao W,Karplus M S,Wu Z,Meissner R,Shi D,Klemperer S L,Su H,Kind R,Xue G,Brown L D. 2012. Crustal shear (S) velocity and Poisson’s ratio structure along the INDEPTH Ⅳ profile in northeast Tibet as derived from wide-angle seismic data[J]. Geophys J Int,191(2):369–384. doi: 10.1111/gji.2012.191.issue-2

    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419

    Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Leshou C,Tan H,Wei W,Jones A G,Booker J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684

    Owens T J,Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution[J]. Nature,387(6628):37–43. doi: 10.1038/387037a0

    Paige C C,Saunders M A. 1982a. Algorithm 583:LSQR:Sparse linear equations and least squares problems[J]. ACM T Math Software,8(2):195–209. doi: 10.1145/355993.356000

    Paige C C,Saunders M A. 1982b. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM T Math Software,8(1):43–71. doi: 10.1145/355984.355989

    Pandey S,Yuan X H,Debayle E,Tilmann F,Priestley K,Li X Q. 2015. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography[J]. Geophys Res Lett,42(11):4326–4334. doi: 10.1002/2015GL063921

    Shin Y H,Xu H Z,Braitenberg C,Fang J,Wang Y. 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data[J]. Geophys J Int,170(3):971–985. doi: 10.1111/gji.2007.170.issue-3

    Shin Y H,Shum C K,Braitenberg C,Lee S M,Na S H,Choi K S,Hsu H,Park Y S,Lim M. 2015. Moho topography,ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Sci Rep,5:11681. doi: 10.1038/srep11681

    Tian X B,Liu Z,Si S K,Zhang Z J. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics,634:198–207. doi: 10.1016/j.tecto.2014.07.001

    Wang Q,Zhang P Z,Freymueller J T,Bilham R,Larson K M,Lai X A,You X Z,Niu Z J,Wu J C,Li Y X,Liu J N,Yang Z Q,Chen Q Z. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science,294(5542):574–577. doi: 10.1126/science.1063647

    Wang Q,Zhu D C,Zhao Z D,Liu S A,Chung S L,Li S M,Liu D,Dai J G,Wang L Q,Mo X X. 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima,central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,198/199:24–37. doi: 10.1016/j.lithos.2014.03.019

    Xu Z J,Song X D. 2010. Joint inversion for crustal and Pn velocities and Moho depth in eastern margin of the Tibetan Plateau[J]. Tectonophysics,491(1/4):185–193.

    Yang Y J,Zheng Y,Chen J,Zhou S Y,Celyan S,Sandvol E,Tilmann F,Priestley K,Hearn T M,Ni J F,Brown L D,Ritzwoller M H. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochem Geophys Geosyst,11(8):Q08010. doi: 10.1029/2010GC003119

    Yang Y J,Ritzwoller M H,Zheng Y,Shen W S,Levshin A L,Xie Z J. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. J Geophys Res,117(B4):B04303. doi: 10.1029/2011JB008810

    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2

    Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28(1):211–280. doi: 10.1146/annurev.earth.28.1.211

    Yue H,Chen Y J,Sandvol E,Ni J,Hearn T,Zhou S Y,Feng Y G,Ge Z X,Trujillo A,Wang Y B,Jin G,Jiang M M,Tang Y C,Liang X F,Wei S Q,Wang H Y,Fan W Y,Liu Z. 2012. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau[J]. J Geophys Res,117:B5307. doi: 10.1029/2011JB008545

    Zhang H,Zhao J M,Xu Q. 2012. Crustal and upper mantle velocity structure beneath central Tibet by P-wave teleseismic tomography[J]. Geophys J Int,190(3):1325–1334. doi: 10.1111/gji.2012.190.issue-3

    Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from Global Positioning System data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1

    Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122. doi: 10.1016/j.jpgl.2013.09.038

    Zhao W L,Amelung F,Doin M P,Dixon T H,Wdowinski S,Lin G Q. 2016. InSAR observations of lake loading at Yangzhuo-yong Lake,Tibet:Constraints on crustal elasticity[J]. Earth Planet Sci Lett,449:240–245. doi: 10.1016/j.jpgl.2016.05.044

    Zhou Z G,Lei J S. 2016. Pn anisotropic tomography and mantle dynamics beneath China[J]. Phys Earth Planet Inter,257:193–204. doi: 10.1016/j.pepi.2016.06.005

图(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-09-01
  • 发布日期:  2019-06-30

目录

/

返回文章
返回