基于随机抽样一致性-网格搜索方法反演断层面倾角

段虎荣, 闫全超, 李闰, 陈胜雷

段虎荣, 闫全超, 李闰, 陈胜雷. 2019: 基于随机抽样一致性-网格搜索方法反演断层面倾角. 地震学报, 41(5): 585-599. DOI: 10.11939/jass.20190022
引用本文: 段虎荣, 闫全超, 李闰, 陈胜雷. 2019: 基于随机抽样一致性-网格搜索方法反演断层面倾角. 地震学报, 41(5): 585-599. DOI: 10.11939/jass.20190022
Duan Hurong, Yan Quanchao, Li Run, Chen Shenglei. 2019: Inversion of fault dip angle based on the random sampling consistency combined with the grid search algorithm. Acta Seismologica Sinica, 41(5): 585-599. DOI: 10.11939/jass.20190022
Citation: Duan Hurong, Yan Quanchao, Li Run, Chen Shenglei. 2019: Inversion of fault dip angle based on the random sampling consistency combined with the grid search algorithm. Acta Seismologica Sinica, 41(5): 585-599. DOI: 10.11939/jass.20190022

基于随机抽样一致性-网格搜索方法反演断层面倾角

基金项目: 地理信息工程国家重点实验室开放基金(SKLGIE2017-M-3-3)和国家自然科学基金(41304013)联合资助
详细信息
    通讯作者:

    段虎荣: e-mail:duanhurong@126.com

  • 中图分类号: P315.2

Inversion of fault dip angle based on the random sampling consistency combined with the grid search algorithm

  • 摘要: 采用小地震的丛集性活动资料定量地研究地下断层的三维几何信息对地震危险性评估具有至关重要的意义。若所使用的资料存在高比率的离群值,将会使断层几何参数的估值产生较大偏差。为了提高断层几何参数估值的稳健性,本文将随机抽样一致性(RANSAC)与网格搜索(GS)相结合,给出了随机抽样一致性-网格搜索(RANSAC-GS)估算方法。在数值模拟试验中,对模拟观测值加入1%,5%,10%和20%的离群值,分别采用GS和RANSAC-GS两种方法估算了断层面倾角,并从反演参数的残差、反演模型计算值与观测值的密合度、目标函数及相关度等方面证明了RANSAC-GS方法即使在高比率离群值的情况下,依然能够给出稳健的参数估值。最后,利用2008年1月至2012年12月鄂尔多斯地区小震重定位结果,以震源点到断层面距离最小为准则,采用RANSAC-GS方法反演获得太谷断裂的断层面倾角为52.5°,与前人的结果有较好的一致性,在此基础上对大地测量形变观测给出合理的阐释,从而证明了本文方法的有效性。
    Abstract: It is of great significance to quantitatively study the geometric parameters of deep fault by using the cluster activity data of small earthquakes. If there is a high ratio of outliers, it will have a serious impact on the estimated parameters. Therefore, in order to improve the robustness of parameter estimation, this paper combined the random sampling consistency (RANSAC) algorithm with the grid search (GS) algorithm, and gave the RANSAC-GS algorithm. In the numerical simulation tests, 1%, 5%, 10% and 20% outliers were added to the simulated observations, respectively. At the same time, both GS and RANSAC-GS were used to compute the dip angle of the fault. The robustness of the RANSAC-GS was proved by the residuals of the inversion parameters, the tightness between the calculated values and the observations, the objective function, and the correlation, even if in the cases with a high ratio of outliers. And then we took the Taigu fault as an example to verify the RANSAC-GS algorithm. Basing on the fine locations of small earthquakes in the Ordos area from January of 2008 to December of 2012, we obtained the dip angle of Taigu fault to be 52.5° by RANSAC-GS algorithm with the minimum distance from the source point to the fault surface as the criterion. The dip angle result agrees well with the previous results, suggesting the effectiveness of the RANSAC-GS algorithm.
  • 图  1   离群值比率为1% (a),5% (b),10% (c)和20% (d)的情形下模拟数据与断层面的空间关系

    横轴 “水平距离” 为震源到断层地表轨迹的水平距离,下同

    Figure  1.   Spatial relationship between simulated data and fault plane with the outlier ratio of 1% (a),5% (b),10% (c) and 20% (d)

    The distance on horizontal axis is the horizontal distance from the epicenter to fault surface traces, the same below

    图  2   GS与RANSAC-GS反演所得倾角残差的对比

    Figure  2.   Comparison of dip angle residual obtained from inversion by GS with that by RANSAC-GS algorithm

    图  3   离群值比率为 1% (a),5% (b),10% (c) 和20% (d)时观测值残差在各区间所占百分比直方图

    横轴为由反演模型计算的地震震源深度和由模拟观测数据计算所得地震震源深度的残差区间,纵轴为各残差区间内震源点个数占总震源数的百分比

    Figure  3.   Histogram of percentage of error within each residual interval with the outlier ratio of 1% (a),5% (b),10% (c) and 20% (d)

    The horizontal axis is the residual interval of the focal depth calculated by inversion model and that of the focal depth calculated by simulated observation data,and the vertical axis is the percentage of the number of focal points in each residual interval to the total number of focal points

    图  4   不同离群值比率下基于RANSAC-GS方法所得断层面倾角的线性拟合结果

    Figure  4.   The linear fitting result of fault dip angle based on RANSAC-GS with different outlier ratios

    图  5   研究区域构造背景及断裂分布

    Figure  5.   The tectonic settings and fracture distribution in the studied area

    图  6   利用式(3)所得目标函数计算出的太谷断层倾角估计结果

    (a) 余震震源分布,图中小圆圈为地震震源,小圆圈中间带 “+” 表示被RANSAC选中的内部点,不同颜色为不同迭代次选中的点,直线与横轴的夹角即为该参考点的断层面倾角,下同;(b) 目标函数随倾角的变化;(c) 基于式(4)所得目标函数的残差分析;(d) 拟合相关度分析

    Figure  6.   The estimation result of Taigu fault dip with objective function calculated by equation (3)

    (a) Source distribution of aftershocks,where the small circles are the seismic source,and the circles with cross indicate the internal point selected by RANSAC,and the crosses with the different colors are the points selected by different iterations,and the angle between the straight line and the horizontal axis is the dip of the fault plane for the reference point,which are the same below;(b) Variation of the objective function with the dip;(c) The residual analysis of the objective function obtained from equation (4);(d) The fitting correlation analysis

    图  7   利用式(2)所得目标函数计算出的太谷断层倾角估计结果

    (a) 余震震源分布图;(b) 目标函数随倾角的变化;(c) 目标函数残差分析;(d) 拟合相关度分析

    Figure  7.   The estimation result of Taigu fault dip with objective function calculated by equation (2)

    (a) Source distribution of aftershocks;(b) Variation of the objective function with the dip;(c) The residual analysis of the objective function;(d) The fitting correlation analysis

    图  8   利用式(6)所得目标函数计算出的太谷断层倾角估计结果

    (a) 余震震源分布;(b) 目标函数随倾角的变化;(c) 目标函数残差分析;(d) 拟合相关度分析

    Figure  8.   The estimation result of Taigu fault dip with objective function calculated by equation (6)

    (a) Source distribution of aftershocks;(b) Variation of the objective function with the dip;(c) The residual analysis of the objective function;(d) The fitting correlation analysis

    图  9   基于不同资料反演所得断层活动引起的地表形变

    Figure  9.   Surface deformation caused by fault activity from inversion by using leveling and GPS data

  • 蔡妍,吴建平,房立华,王未来,黄静. 2014. 鄂尔多斯东缘地震重定位及拉张盆地过渡区的地震分布特征[J]. 地球物理学报,57(4):1079–1090. doi: 10.6038/cjg20140406

    Cai Y,Wu J P,Fang L H,Wang W L,Huang J. 2014. Relocation of the earthquakes in the eastern margin of Ordos block and their tectonic implication in the transition zones of extensional basin[J]. Chinese Journal of Geophysics,57(4):1079–1090 (in Chinese).

    陈艺虾,孙权森,徐焕宇,耿蕾蕾. 2012. SURF算法和RANSAC算法相结合的遥感图像匹配方法[J]. 计算机科学与探索,6(9):822–828. doi: 10.3778/j.issn.1673-9418.2012.09.006

    Chen Y X,Sun Q S,Xu H Y,Geng L L. 2012. Matching method of remote sensing images based on SURF algorithm and RANSAC algorithm[J]. Journal of Frontiers of Computer Science and Technology,6(9):822–828 (in Chinese).

    邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030. doi: 10.3321/j.issn:1006-9267.2002.12.007

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.

    高彬. 2016. 鄂尔多斯及周缘构造几何形态及主要活动断裂滑动速率研究[D]. 北京: 北京大学: 32−38.

    Gao B. 2016. Research of Parameters of Faults Around Ordos Block and Their Slip Rates Based on Earthquakes, GPS and Level Observation[D]. Beijing: Peking University: 32−38 (in Chinese).

    高彬,周仕勇,蒋长胜. 2016. 基于地震活动性资料估计鄂尔多斯块体周缘构造断层面倾角[J]. 地球物理学报,59(7):2444–2452. doi: 10.6038/cjg20160711

    Gao B,Zhou S Y,Jiang C S. 2016. Estimate of dip angles of faults around Ordos block based on earthquakes[J]. Chinese Journal of Geophysics,59(7):2444–2452 (in Chinese).

    国家地震局 " 鄂尔多斯周缘活动断裂系” 课题组. 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社: 77−102.

    Research Group of Active Fault System Around Ordos Massif, State Seismological Bureau. 1998. Active Fault System Around Ordos Massif[M]. Beijing: Seismological Press: 77−102 (in Chinese).

    万永革,沈正康,刁桂苓,王福昌,胡新亮,盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报,51(3):793–804. doi: 10.3321/j.issn:0001-5733.2008.03.020

    Wan Y G,Shen Z K,Diao G L,Wang F C,Hu X L,Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics,51(3):793–804 (in Chinese).

    王福昌,靳志同,钱小仕,任晴晴,霍振香. 2012. 由余震分布确定大地震子断层及其参数的模糊聚类方法[J]. 地震学报,34(6):793–803. doi: 10.3969/j.issn.0253-3782.2012.06.006

    Wang F C,Jin Z T,Qian X S,Ren Q Q,Huo Z X. 2012. Fuzzy clustering analysis in determining sub-faults of large earthquakes based on aftershock distribution[J]. Acta Seismologica Sinica,34(6):793–803 (in Chinese).

    王福昌,万永革,钱小仕,张丽娟,张梅东. 2013. 由地震分布丛集性给出断层参数的一种新方法[J]. 地球物理学报,56(2):522–530. doi: 10.6038/cjg20130216

    Wang F C,Wan Y G,Qian X S,Zhang L J,Zhang M D. 2013. A new method for determining fault planes parameters according to earthquake clustering[J]. Chinese Journal of Geophysics,56(2):522–530 (in Chinese).

    王敏. 2009. GPS观测结果的精化分析与中国大陆现今地壳形变场研究[D]. 北京: 中国地震局地质研究所: 25−41.

    Wang M. 2009. Analysis of GPS Data With High Precision & Study on Present-Day Crustal Deformation in China[D]. Beijing: Institute of Geology, China Earthquake Administration: 25−41 (in Chinese).

    王鸣,王培德. 1992. 1989年10月18日大同—阳高地震的震源机制和发震构造[J]. 地震学报,14(4):407–415.

    Wang M,Wang P D. 1992. The focal mechanism and seismogenic structure of the Datong-Yanggao earthquake on October 18,1989[J]. Acta Seismologica Sinica,14(4):407–415 (in Chinese).

    王阎昭,王恩宁,沈正康,王敏,甘卫军,乔学军,孟国杰,李铁明,陶玮,杨永林,程佳,李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学:D辑,38(5):582–597.

    Wang Y Z,Wang E N,Shen Z K,Wang M,Gan W J,Qiao X J,Meng G J,Li T M,Tao W,Yang Y L,Cheng J,Li P. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region,China[J]. Science in China:Series D,51(9):1267–1283. doi: 10.1007/s11430-008-0106-4

    谢新生,江娃利,王焕贞,冯西英. 2004. 山西太谷断裂带全新世活动及其与1303年洪洞8级地震的关系[J]. 地震学报,26(3):281–293. doi: 10.3321/j.issn:0253-3782.2004.03.007

    Xie X S,Jiang W L,Wang H Z,Feng X Y. 2004. Holocene activities of the Taigu fault zone,Shanxi Province,in relation to the 1303 Hongdong M=8 earthquake[J]. Acta Seismologica Sinica,26(3):281–293 (in Chinese).

    许桂林, 马保起, 江娃利. 1998. 山西交城断裂带第四纪活动习性及其分段特征[G]//地壳构造与地壳应力文集(11). 北京: 地震出版社: 13−21.

    Xu G L, Ma B Q, Jiang W L. 1998. The behavior and segmentation of the Shanxi Jiaocheng active fault[G]//Crustal Tectonics and Crustal Stress (11). Beijing: Seismological Press: 13−21 (in Chinese).

    许忠淮,阎明,赵仲和. 1983. 由多个小地震推断的华北地区构造应力场的方向[J]. 地震学报,5(3):268–279.

    Xu Z H,Yan M,Zhao Z H. 1983. Evaluation of the direction of tectonic stress in North China from recorded data of a large number of small earthquakes[J]. Acta Seismologica Sinica,5(3):268–279 (in Chinese).

    杨丰凯. 2017. 基于偏拉普拉斯分布的若干分位数回归模型的统计推断[D]. 济南: 山东大学: 66−78.

    Yang F K. 2017. Statistical inferences for some quantile regression models based on asymmetric Laplace distribution[D]. Ji’nan: Shandong University: 66−78 (in Chinese).

    于湘伟,陈运泰,张怀. 2010. 京津唐地区中小地震重新定位[J]. 地震学报,32(3):257–269. doi: 10.3969/j.issn.0253-3782.2010.03.001

    Yu X W,Chen Y T,Zhang H. 2010. Relocation of earthquakes in Beijing-Tianjin-Tangshan region with double-difference tomography technique[J]. Acta Seismologica Sinica,32(3):257–269 (in Chinese).

    俞春泉,陶开,崔效锋,胡幸平,宁杰远. 2009. 用格点尝试法求解P波初动震源机制解及解的质量评价[J]. 地球物理学报,52(5):1402–1411. doi: 10.3969/j.issn.0001-5733.2009.05.030

    Yu C Q,Tao K,Cui X F,Hu X P,Ning J Y. 2009. P-wave first-motion focal mechanism solutions and their quality evaluation[J]. Chinese Journal of Geophysics,52(5):1402–1411 (in Chinese).

    张广伟,雷建设,谢富仁,郭永霞,兰从欣. 2011. 华北地区小震精定位及构造意义[J]. 地震学报,33(6):699–714. doi: 10.3969/j.issn.0253-3782.2011.06.001

    Zhang G W,Lei J S,Xie F R,Guo Y X,Lan C X. 2011. Precise relocation of small earthquakes occurred in North China and its tectonic implication[J]. Acta Seismologica Sinica,33(6):699–714 (in Chinese).

    张浪平,邵志刚,马宏生,王行舟,李志海. 2013. 基于地震参数的缅甸弧俯冲带处板块间几何接触方式的研究[J]. 中国科学:地球科学,43(4):653–664.

    Zhang L P,Shao Z G,Ma H S,Wang X Z,Li Z H. 2013. The plate contact geometry investigation based on earthquake source parameters at the Burma arc subduction zone[J]. Science China Earth Sciences,56(5):806–817. doi: 10.1007/s11430-012-4578-x

    赵烨,蒋建国,洪日昌. 2014. 基于RANSAC的SIFT匹配优化[J]. 光电工程,41(8):58–65. doi: 10.3969/j.issn.1003-501X.2014.08.010

    Zhao Y,Jiang J G,Hong R C. 2014. An optimized SIFT matching based on RANSAC[J]. Opto-Electronic Engineering,41(8):58–65 (in Chinese).

    郑勇,谢祖军. 2017. 地震震源深度定位研究的现状与展望[J]. 地震研究,40(2):167–175. doi: 10.3969/j.issn.1000-0666.2017.02.001

    Zheng Y,Xie Z J. 2017. Present status and prospect of earthquake focal depth locating[J]. Journal of Seismological Research,40(2):167–175 (in Chinese).

    朱艾澜,徐锡伟,周永胜,尹京苑,甘卫军,陈桂华. 2005a. 川西地区小震重新定位及其活动构造意义[J]. 地球物理学报,48(3):629–636.

    Zhu A L,Xu X W,Zhou Y S,Yin J Y,Gan W J,Chen G H. 2005a. Relocation of small earthquakes in western Sichuan,China and its implications for active tectonics[J]. Chinese Journal of Geophysics,48(3):629–636 (in Chinese).

    朱艾斓,徐锡伟,胡平,周永胜,林元武,陈桂华,甘卫军. 2005b. 首都圈地区小震重新定位及其在地震构造研究中的应用[J]. 地质论评,51(3):268–274.

    Zhu A L,Xu X W,Hu P,Zhou Y S,Lin Y W,Chen G H,Gan W J. 2005b. Relocation of small earthquakes in Beijing area and its implication to seismotectonics[J]. Geological Review,51(3):268–274 (in Chinese).

    Chum O, Matas J. 2005. Matching with PROSAC: Progressive sample consensus[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE: 220−226.

    Fan L X, Pylvänäinen T. 2008. Robust scale estimation from ensemble inlier sets for random sample consensus methods[C]//Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer: 182−195.

    Fischler M A,Bolles R C. 1981. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun ACM,24(6):381–395.

    Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200

    Hayes G P,Wald D J. 2009. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori:A probabilistic approach[J]. Geophys J Int,176(3):951–964. doi: 10.1111/j.1365-246X.2008.04035.x

    Herring T A, King R W, McClusky S C. 2009. GAMIT Reference Manual, Release 10.35[M]. Massachusetts: Massachusetts Institute of Technology: 17−119.

    Huber P J. 2009. Robust Statistics[M]. 2nd ed. New York: John Wiley & Sons, Inc: 149−233.

    Langston C A,Barker J S,Pavlin G B. 1982. Point-source inversion techniques[J]. Phys Earth Planet Inter,30(2/3):228–241. doi: 10.1016/0031-9201(82)90110-8

    Lin G Q,Shearer P M,Hauksson E. 2007. Applying a three-dimensional velocity model,waveform cross correlation,and cluster analysis to locate southern California seismicity from 1981 to 2005[J]. J Geophys Res,112(B12):B12309. doi: 10.1029/2007JB004986

    Ouillon G,Ducorbier C,Sornette D. 2008. Automatic reconstruction of fault networks from seismicity catalogs:Three-dimensional optimal anisotropic dynamic clustering[J]. J Geophys Res,113(B1):B01306.

    Reasenberg P, Oppenheimer D H. 1985. FPFIT, FPPLOT and FPPAGE: Fortran Computer Programs for Calculating and Displaying Earthquake Fault-Plane Solutions, Open-File Report No. 85-739[R], California: U.S. Geological Survey: 1−5.

    Schaff D P,Waldhauser F. 2005. Waveform cross-correlation-based differential travel-time measurements at the northern California seismic network[J]. Bull Seismol Soc Am,95(6):2446–2461. doi: 10.1785/0120040221

    Schaff D P,Bokelmann G H R,Beroza G C,Waldhauser F,Ellsworth W L. 2002. High-resolution image of Calaveras fault seismicity[J]. J Geophys Res,107(B9):ESE 5-1–ESE 5-16. doi: 10.1029/2001JB000633

    Singh S J,Rani S. 1996. 2-D modelling of crustal deformation associated with strike-slip and dip-slip faulting in the earth[J]. Proc Natl Acad Sci,66:187–215.

    Singh S J,Kumar A,Singh J. 2003. Deformation of a monoclinic elastic half-space by a long inclined strike-slip fault[J]. ISET J Earthq Technol,40(1):51–59.

    Torr P H S,Davidson C. 2003. IMPSAC:Synthesis of importance sampling and random sample consensus[J]. IEEE Trans Pattern Anal Machine Intell,25(3):354–364. doi: 10.1109/TPAMI.2003.1182098

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.

图(9)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  686
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-18
  • 修回日期:  2019-04-21
  • 网络出版日期:  2019-10-13
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回