Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities
-
摘要: 为了研究吉兰泰断陷盆地周缘断裂带气体排放及其对断层活动性的指示意义,在盆地周缘4条活动断裂上布设了5条土壤气测量剖面和1条电磁测量剖面,观测了土壤气中Rn,Hg和CO2的浓度、释放通量和地电阻率,对各测量剖面进行了土壤化学组分分析,计算得到了断层活动性相对指数KQ。研究结果显示:土壤气体CO2和Rn受渗透性较低的粉砂土阻挡,主要沿结构破碎的断层上盘逃逸,并形成浓度高峰;吉兰泰盆地南缘土壤气Rn,Hg和CO2的浓度和释放通量最高,可能与盆地西南缘花岗岩中U和Ra的运移以及盆地南缘碳酸盐岩的分解有一定的关系。各测量剖面的断层活动性相对指数KQ值的变化特征表明,正断层和逆断层的KQ值大于走滑断层,且巴彦乌拉山山前断裂上的KQ值最高,揭示其活动性最强,有可能是地震发生的潜在危险区。Abstract: Soil gases from fault zones are good indicators of tectonic and seismic activities, to which many seismologists and geochemists have been paid much attention. Five measuring sections for soil gas and one for earth resistivity were designed on the four active faults around the Jilantai basin, northwestern China. The data of earth resistivity, concentration and flux of soil gases Rn, Hg and CO2 were attained, and the chemical compositions of soil were analyzed in all sections and the relative index KQ of fault activity was calculated. All the results showed that soil gases CO2 and Rn were blocked by sandy soil layers with low permeability and escaped along the hanging wall of the faults with broken structures, easily forming concentration peaks. High concentrations and fluxes of Rn, Hg and CO2 were distributed in the southern margin of the Jilantai basin, which might be related to the migration of U and Ra in granites in southwestern margin of the basin and the decomposition of local carbonate rocks in south margin of the basin. The variation characteristics of relative index KQ of fault activity in each section indicated normal and reverse faults with higher KQ values than strike-slip faults. The maximum KQ value was observed in the piedmont fault of Bayanwula mountains, probably indicating that this fault is of the strongest activity and is also a potential area of high seismic hazards.
-
Keywords:
- Jilantai faulted depression basin /
- fault zone /
- soil gases /
- geochemistry /
- flux /
- fault activity
-
引言
地形变观测被公认为是目前最有效的地震前兆监测手段之一,自1966年邢台地震后我国就开始设站进行地形变的连续观测(吴翼麟,1990;张国民,2002),经多期规划调整,目前已发展成多学科、多方法的综合观测,并初步实现了观测的数字网络化(秦家林,2015)。大量的地形变观测数据被初步用于前兆异常识别和强震地点预测研究(严尊国等,2000;江在森,武艳强,2012),但随着观测资料的日益丰富及观测数据的长期积累,我们注意到同台同物理量不同仪器的观测数据有较大差异,部分仪器的观测结果与区域构造背景明显不符,给观测数据的物理解释造成了一定困难,同时也影响了前兆异常的可靠性。因此,结合仪器观测原理和台址环境建模作进一步分析,从而深化对观测数据的认识是十分必要的。
地震地质建模的研究由来已久,早在20世纪80年代就开始引用数值模拟方法(England,McKenzie,1982),特别是将有限元建模方法用于三维非线性多场耦合复杂建模分析,目前已成为主流的建模分析方法之一(Parsons,2002),在走滑断层活动过程(Xing,Makinouchi,2002)、地震孕育机理(Xing et al,2004 ;邓志辉等,2011)、滑坡形成机制(申通等,2014)、构造应力与历史地震(祝爱玉等,2015)、活动地块地壳形变差异(唐方头等,2003)、介质不均匀性和断层倾角对同震位移场影响(李锋,黄金水,2011)的模拟以及地壳运动动力学机制的有限元分析(叶正仁,王建,2004)等方面均有很多应用。此外,针对地电台址的介质条件和构造环境也有过初步的数值模拟研究(阮爱国,赵和云,1991;赵和云,阮爱国,1992),但基于山体上形变台站的应力环境的数值模拟研究相对缺乏,基底应力场与山体中观测到的应力变化是否一致目前尚存在很大争议。为此,本文拟以黔江仰头山上的形变综合台黔江台为例,结合实际构造地质资料建立有限元模型,分析台址环境对观测数据的影响,以期解释前兆观测结果的真实物理意义。
1. 黔江台简介
黔江台地处重庆市黔江区仰头山,海拔1 020 m,属于渝东南武陵山区。武陵山区的地貌受地质拼迭控制,以低中山为主,山脉走向多与构造线方向一致,其中仰头山是NE走向山脉的一段,其NW方向有区域内最高的八面山,其SE方向为黔江向斜,地势低洼,阿蓬江贯穿其中(图 1a)。黔江台位于NE向彭水基底断裂与黔江断裂之间,距台站4 km处有第四纪仰头山断层(1856年小南海M6¼地震即发生在该断层上)通过(图 1b),而断裂可能影响区域应力场的分布(曹建玲等,2013)。
黔江台配置SS-Y伸缩仪、DSQ水管仪和VS垂直摆等三套形变仪器,均安装在同一个观测硐室,其中水管仪和伸缩仪的基线布设相同,分别监测该区域的应变和倾斜变化,每套仪器分南北和东西分量。三套仪器均能记录到明显的固体潮,数据连续性较好,同震记录丰富。
2. 黔江台地质环境
黔江台位于上扬子台坳、渝东南断褶隆起区,区域内NNE向褶皱群呈带状分布,以隔槽式褶皱为主,背斜轴部发育正断层,盖层中逆冲推覆构造发育,断层的新生性较强。此外,新生代的山间盆地和断陷盆地也较为发育。
2.1 地层特征
黔江地区新生代以来遭受了比较强烈的剥蚀,地层出露良好(图 2a),其中以古生界地层发育最佳,下古生界发育最全,分布最广,上古生界假整合于中志留统之上,发育较差,缺失早中泥盆统和早晚石炭统的沉积;中生界假整合于长兴组之上,三叠系分布广泛,中侏罗统与上白垩统之间为角度不整合接触;新生界第三系和第四系不甚发育,零星分布,角度不整合于老地层之上(丁仁杰,李克昌,2004)。
观测硐室的台基为二叠系栖霞灰岩,厚约68 m;其下为泥盆系泥灰岩夹砂岩,岩层相对较薄;基底出露大量志留纪泥页岩。
2.2 岩性特征
结合黔江区域的地层分布特征,该区域出露的岩性主要为砂岩、灰岩和页岩(图 2b),由于不同岩性的物质成分和结构均不相同,其物理特性和岩石力学参数具有很大差异(叶金汉等,1991)。① 砂岩。岩性较硬,年代较新,上白垩统为砂质灰质细砾岩和石英砂岩,中侏罗统石英粉砂岩和长石砂岩互层,上三叠统为细至粗粒石英砂岩及岩屑砂岩,中三叠统上部为白云质、钙质石英砂岩;中志留统上部为罗惹坪组粉砂岩;② 灰岩。岩性致密,岩溶裂隙发育,中三叠统下部为薄—厚层灰岩、灰质白云岩及白云岩,下三叠统为中厚—巨厚层白云岩和灰岩互层;上二叠统为中—厚层含硅质团块和条带灰岩,下二叠统为中—巨厚层灰岩,夹硅质层;上泥盆统上部为泥质灰岩;③ 页岩。岩性较软,主要为下二叠统梁山组炭质页岩、中志留统罗惹坪组粉砂质页岩和下志留统龙马溪组页岩。
2.3 构造特征
黔江区域的盖层变形以NE向构造(NE向褶皱及其伴生断裂)为主体构造格架,断层走向和褶皱轴向以NE向为主,相互平行交替排列,同时存在少数NNE和NNW向派生构造。褶皱主要为铜西向斜,位于黔江台的东南部,呈NE走向,核部出露白垩系和三叠系新地层,与邻近的背斜构成箱状褶皱。
黔江地区NE向断裂与NNE向褶皱伴生形成盖层断裂,当褶皱完全发育后,地壳持续缩短进而导致错断,平行于褶皱轴线发育逆冲断层和逆掩断层,如黔江断裂,总体走向为N40°E,全长约140 km,在平面上由近于平行的4条断裂组合形成右阶斜列式结构,以阶区为界,黔江断裂分为北、中、南三段,黔江台位于龙潭坝断裂与筲箕滩断裂(中南段)的交界处;该断裂剖面上,破碎带比较发育,断层岩主要为碎裂岩、角砾岩、方解石脉和断层泥,为晚更新世活动断层。与褶皱轴直交发育派生的正断层,如仰头山断层,距黔江台约4 km,总体走向为290°—320°,断续展布约12 km,倾向SW或NE,倾角为70°—80°,具有逆滑左行平移性质,断裂破碎带发育,由碎裂岩、角砾岩、方解石脉和团块组成,1856年该断层上发生重庆辖区最大的小南海M6¼地震,活动性较强(刘玉亮,2009)。
3. 黔江台应力环境
重庆地处中国南北构造带的东侧,属于东、西部板块运动的中间过渡地区。从前述构造运动、活动断裂、褶皱的形成过程分析,该区域断褶构造的形成和地壳的缩短、隆升分别与印度板块和太平洋板块碰撞、俯冲所产生的挤压相联系,反映了印度板块与太平洋板块两侧在挤压动力条件下对区域新生代构造应力场的影响和制约。
丁仁杰和李克昌(2004)通过汇集经绝对年龄测定或有确切证据认定的近30条第四纪活动断层资料,依据其力学性质和运动方式,确定其正应力方向,同时基于现代地震震源机制解的P轴轴向,结合新构造运动形迹(图 3),综合推断出重庆辖区新生代构造应力场的基本特征。
图 3 重庆辖区应力环境及黔江地区应力示意图(改自丁仁杰和李克昌,2004)Figure 3. The stress environment in Chongqing area and the stress distribution in Qianjiang region (modified from Ding and Li,2004)3.1 构造应力环境
构造应力分析主要结合重庆辖区第四纪活动构造展布的空间位置、力学性质、运动方向及区域地震的震源机制反演进行。该区域的新构造运动是在NNE向倾斜的古地势环境下发展演化而来,现阶段地壳活化,持续掀斜抬升运动(李伦炯,1997);受NW向压应力和深部滑脱层的影响,该区域发育大量的隔槽式褶皱和逆冲推覆构造,其轴向多为NE向,垂直于区域应力方向;而第四纪断层的力学性质表现为NE向断层的逆滑(左行)运动;近NS向或NNE向断层表现为强烈压性逆冲性质;反演所得正应力轴向整体为WNW方向,反映该区域的主应力迹线方向为WNW向(颜丹平,汪新文,2000;颜丹平等,2008)。徐纪人等(2008)的中国大陆中强地震的震源机制解表明该区域的P轴方位集中在280°—290°和340°—350°的范围内,而辖区内发生的统景M5.2,M5.4和荣昌M5.2地震,其震源机制解P轴轴向分别为287.5°和320°,与断层运动所表现出的正应力轴向基本吻合。因此,渝西-渝东南地区所形成的主应力迹线,由西向东呈WNW向缓缓弯曲转为NW向(图 3)。主应力迹线形态与该断褶构造的力学性质基本吻合,而现代地震震中地震构造的正应力方向与震源主压应力轴向基本一致,也证明了现代构造应力场对新生代构造应力场的继承性。
3.2 GPS应力场
结合全球导航卫星系统资料可知,印度板块以(37±0.2) mm/a的平均速度沿NNE方向运动(Malaimani et al,2008),但在北部坚硬地块的阻挡下,青藏地块发生明显的缩短、隆起并向东部逃逸,这使得川滇地块向SE方向运动(张培震等,2002),而辖区GPS站点(全球国际地球参考2008框架)以大约30 mm/a的速度向SE方向运动。陈涛等(2013)结合重庆辖区2008—2012年GPS资料,应用块体整体旋转线性应变模型获取了该地区的水平形变场和应变场,结果显示该区域的应变以压应变为主,方向近似NW向,主压应力方向与大范围构造应力场基本一致。杨淑贤等(2005)利用地形变测量、震源机制解和钻孔应力测量等资料,综合分析认为重庆辖区新构造期现代构造应力场的作用方向具有明显的分区性,其中黔江区域的应力主要受到NW向的挤压。综上所述,多种研究结果一致认为研究区域内的应力场以NW向压应力为主,各种应变参数处于10−8量级。
4. 有限元建模分析
有限元分析是利用数学近似的方法对真实物理系统进行模拟,通过有限的相互作用的单元去逼近无限未知量的真实系统,从而将复杂问题简单化并求得近似解。随着科技的不断发展,涌现出大量的有限元分析工具,其中Ansys软件常用于地质工程的应力和结构分析。经过不断更新,Ansys软件的有限元分析功能越来越强大,涵盖结构、静力、动力、流体、电磁及多场耦合等多领域分析。本文选用Ansys16.0中的Workbench模块进行建模分析。
4.1 问题描述与假设条件
自2008年观测以来,黔江台的三套仪器工作正常,积累了丰富的观测资料,经对比分析可知:① 在基线布设完全相同的情况下,倾斜类仪器的映震能力远远高于应变类仪器;② 两套倾斜仪能记录到明显的固体潮,而应变仪固体潮幅度较小,特别是东西分量几乎记录不到固体潮;③ 两套倾斜仪的长期趋势不一致,垂直摆观测趋于东南倾,而水管仪观测没有明显的倾斜方向。以上现象除受仪器观测原理影响外,还可能与台址环境有关,因此有必要对其进行建模分析,解释数据差异产生的原因。
由于实际台址环境较复杂,且针对大量的物理量只有定性的研究,为了便于建模分析,本文设定以下假设:① 山体模型。因该地区山体、褶皱及断裂均沿NE方向展布,本文以SW向的地质剖面为基准,并沿其法线方向(NE向)拉伸形成的几何体模拟实际的山体模型;② 地质条件。因该区域的地质构造条件较复杂,可能存在局部破裂或岩性的不均一性,而该模型是针对山体整体的受力变形,故对岩性和构造要素作简单的均一化处理;③ 应力环境。因该区域内的应力场以NE向压应力为主,应变大小为10−8量级,本文设置的应力载荷为108量级,方向指向SE向。
4.2 模型建立与分析
4.2.1 几何模型建立
黔江台位于NE向仰头山体内,沿山体两侧均有同方向的断裂和褶皱分布,构造格局较复杂,区域主压应力方向为SE方向(图 4a)。本文选用与应力方向大致相同的AB剖面图建模分析(图 4b),既保留了整个山体的构造框架,又利于简化模型分析结果的显示。
台址的应力状态除受构造要素影响外,还与该区域的岩石力学性质相关,尤其是当岩石力学性质差异较大时,较软的岩石更容易受力变形。正如图 4b所示,该区域出露的岩性主要为志留纪页岩、泥盆纪砂岩及二叠纪灰岩,以及受断裂破碎作用形成的碎裂岩,这几种岩石的成因、成分、结构及岩石力学性质均不相同,因此,本文结合实际地质资料,参考岩石力学参数表(叶金汉等,1991),设定介质模型的材料参数,列于表 1。
表 1 模型介质岩石力学参数汇总表Table 1. The rock mechanics parameters of model medium岩性 容重/(103 kg·m−3) 抗压强度/MPa 弹性模量/GPa 泊松比 剪切模量/GPa 体积模量/GPa 灰岩 2.70 96 6.00 0.35 2.22 6.66 砂岩 2.58 75 4.00 0.30 1.54 3.33 页岩 2.49 50 2.66 0.20 1.11 1.48 断层 1.32 20 0.91 0.18 3.88 4.73 4.2.2 模型分析
1) 网格划分。网格划分的目的是使模型离散化,并利用适当数量的网格单元得到相对精确的解。网格划分的工具有多种,本文选用Workbench中的自动网格划分工具,该工具自动优化网格划分类型,可满足模型要求。网格的疏密程度直接影响到计算结果的精度,但是网格加密会增加CPU计算时间,需要更大的存储空间。为保证模型网格密度和计算质量,综合考虑计算精度和计算量,本文选取网格尺寸为1.5 m (几何模型的规模为百米级),其它参数均采用默认值,满足模型的需求。
2) 接触关系。当几何体存在多个部件时,需要确定部件之间的相互关系,部件的接触关系影响其间的荷载传递方式。Workbench提供多种接触类型,但由于不同岩层间的摩擦系数和黏合系数很难确定,且岩层之间不存在滑脱现象,本文采用直接绑定接触,符合模型的需求。
3) 边界条件。载荷和约束是Ansys软件求解计算的边界条件,是以所选单元的自由度形式定义的,本文主要分析台址环境受力变化特征,因此载荷主要选择力载荷工具的压力载荷,方向为SE向,大小为100 MPa。考虑到垂向上重力与下地壳的支持力处于平衡状态,模型的基底采用垂向结构约束;而台址东南侧为华南板块,比较稳定,为防止模型移动,模型的东南端采用固定约束。
4.3 模型结果解释
本模型主要研究在SE向应力的挤压下,台址山体的等效应力分布特征和变形特征,其中:等效应力分布主要反映山体受挤压后的应力传播途径,而变形特征则显示山体不同部位的变形程度,包括水平变形和垂向变形。图 5给出了有限元模型的分析结果。
等效应力分布结果(图 5a)显示:在NW向应力的挤压下,区域等效应力的分布受构造要素影响较大,特别是在断层破裂带,应力的方向发生明显变化,远离断层后恢复正常;当岩层具有明显弯曲褶皱时,等效应力较集中于向斜轴部岩层弯曲角度较大的地方。
总体变形结果(图 5b)显示:受挤压后,山体明显缩短,越接近力源,变形幅度越大;岩性较软的志留纪页岩和断层碎裂岩更容易变形,而较硬的灰岩和砂岩变形幅度较小,使得山体变形不均匀,下部页岩在力的作用下水平缩短,垂向上增厚,向上推挤上覆岩层形成上拱的背斜,这与实际的地貌相符合。此外,由于岩层之间存在摩擦力和黏附力,上覆岩层也能记录到部分水平变形(图 5c),但其变形幅度远小于对应的垂向变形(图 5d),特别是山体西北部垂向变形最大,造成山体岩层倾向SE方向。
结合总体变形和等效应力结果可知:黔江仰头山受SE方向的挤压,其变形和应力均集中在山体基底,下部的志留纪页岩发生塑性缩短而向上隆起;上部的二叠纪灰岩受力不再是水平挤压,而是垂向上抬升,使得上覆岩层上拱形成一定弧度,越接近背斜的轴部,其变形越大,对应的上覆岩层弯曲拉张。在上拱的同时,由于岩层自身倾向SE方向,加剧了台站向SE方向倾斜的趋势(图 6)。
4.4 模型验证
黔江台有倾斜观测和应变观测,前者用于观测地壳垂向上的变形,后者用于观测地壳水平向上的变形。观测仪器均布设在仰头山山腰的硐室内,基岩为二叠纪灰岩,观测时段长达十余年,均能记录到清晰的固体潮和同震形变波,灵敏度和精度较高,观测结果可靠。因此,本文选用该台长期积累的观测资料来检验有限元模型的可靠性。黔江台伸缩仪和垂直摆的东西分量均呈稳定持续上升变化趋势(图 7),反映了观测点位的张性变化和东倾变化与模型计算结果一致,即岩层持续上拱,地表弯曲拉张,山体持续向岩层倾向方向倾斜。
综上所述,黔江台能记录到区域应力场的形变信息,但受岩石力学性质和构造要素的影响,台址的变形与山体基底的变形具有一定的差异性,台站记录到的形变并不能完全反映区域应力变化,而是区域应力与构造条件及岩石力学参数的综合反映。因此,定点形变台站观测到的形变信息并非完全是区域应力场的信息,而是经台址构造环境改变后的信息,这是导致其观测结果与构造应力背景不一致的主要原因。
5. 讨论与结论
台站区域范围内的断层、褶皱、岩性及岩层特征是构成台站构造环境的主要因素。由于不同台站具有其独特的台址构造环境,仪器观测数据差异性较大,观测数据的物理意义不明确。以往的研究大多是结合数据曲线形态、时频特征、固体潮及同震信息来提取前兆异常,研判震情形势(即传统的经验预报方法);而关于数据曲线变化的物理意义及前兆机理方面的研究较少,这也正是下一步物理预报所急需解决的问题之一。因此,本文通过地质模型将观测数据与台址环境有机地结合在一起,探寻数据变化的内在本质。
黔江地区构造较复杂,岩性变化差异较大,长期受NW向挤压应力的影响,使得该区域出现大量的褶皱和断层,这些构造要素在一定程度上影响着区域应力场的大小和方向。本文对黔江台的台址资料进行全面收集和整理,并以此为依据建立有限元模型,分析观测数据不同趋势变化的成因机理,得到以下结论:
1) 有限元模型分析结果显示:在NW向压力的作用下,岩性较软的页岩和断层碎裂岩更容易发生变形,而上覆的砂岩和灰岩变形较小;页岩在压力作用下不断塑性缩短,其上覆岩层上拱形成背斜,并倾向SE方向,使得上覆岩层垂向变形大于水平变形;等效应力的分布受断层及褶皱轴的倾向影响较大,均与实际地貌相符。此外,该模型分析结果有助于理解黔江台仪器观测数据的物理意义。
2) 建模结果表明,受岩石力学性质和断层构造要素影响,台址的变形与基底的变形存在差异,台站仪器记录到的形变不完全反映区域应力,而是区域应力与构造条件及岩石力学参数的综合反映,基于此对形变观测数据进行分析,能更好地理解观测数据变化的指示意义。
-
图 1 研究区构造简图和1970年7月19日至2018年6月10日的地震分布(a)以及垂向剖面AA' 简图(b)
F1:巴彦乌拉山山前断裂;F2:狼山山前断裂;F3:桌子山西缘断裂;F4:正谊关断裂
Figure 1. The tectonic settings and distribution of earthquakes from 19 July 1970 to 10 June 2018 in the studied area (a) and the vertical profile AA' (b)
F1:Bayanwula mountain Piedmont fault;F2:Langshan mountain Piedmont fault;F3:Zhuozi mountain Western margin fault of;F4:Zhengyiguan fault
图 14 中国不同地区土壤气浓度和释放通量对比图
数据引自Li等(2013),Zhou等(2016)和杨江(2018)
Figure 14. Contrast map of concentrations and fluxes of soil gases from different places in China
Data is after Li et al (2013),Zhou et al (2016) and Yang (2018)
表 1 土壤气Rn,Hg和CO2测量剖面基本信息
Table 1 Basic information about the measurement sections for soil gases Rn,Hg and CO2
剖面 剖面编号 断裂 断裂编号 断裂性质 北纬/° 东经/° 巴彦乌拉 BYWL 巴彦乌拉山山前断裂 F1 正断层 39.5 105.2 乌兰巴兴 WLBX 狼山山前断裂 F2 正断层 40.4 106.2 那仁乌布尔嘎查 NRWBEGC 狼山山前断裂 F2 正断层 40.9 106.6 大路盖 DLG 桌子山西缘断裂 F3 逆断层 40.0 106.8 正义关 ZYG 正谊关断裂 F4 左旋走滑 39.3 106.7 注:土壤气剖面的经纬度是测线中央(剖面与断层相交处)的经纬度。 表 2 土壤气Rn,Hg和CO2浓度的测量结果
Table 2 Measurement results of the concentrations of soil gases Rn,Hg and CO2
测线编号 测项 Qmean σ Qmean+σ/2 Qmean-σ/2 Qmax Qmin KQ BYWL-1 CO2 0.08% 0.03 0.09% 0.07% 0.14% 0.06% 2.33 BYWL-2 0.11% 0.04 0.13% 0.09% 0.18% 0.04% 4.50 DLG-1 0.10% 0.02 0.11% 0.08% 0.14% 0.06% 2.33 DLG-2 0.10% 0.04 0.12% 0.08% 0.23% 0.07% 3.29 NRWBEGC-1 0.22% 0.06 0.25% 0.19% 0.38% 0.14% 2.71 WLBX-1 0.14% 0.05 0.16% 0.11% 0.28% 0.11% 2.55 WLBX-2 0.12% 0.03 0.13% 0.10% 0.16% 0.07% 2.29 ZYG-1 0.23% 0.06 0.26% 0.20% 0.32% 0.16% 2.00 ZYG-2 0.22% 0.06 0.25% 0.19% 0.36% 0.15% 2.48 BYWL-1 Hg 13 6 16 10 30 6 5.00 BYWL-2 10 3 11 8 15 6 2.50 DLG-1 12 4 14 10 24 8 3.00 DLG-2 12 3 13 11 19 8 2.38 NRWBEGC-1 10 4 12 8 18 4 4.50 WLBX-1 10 3 11 8 16 8 2.13 WLBX-2 10 3 11 9 15 7 2.14 ZYG-1 9 2 10 8 12 7 1.85 ZYG-2 11 3 12 9 15 7 2.14 BYWL-1 Rn 9.784 6.768 13.168 6.400 27.827 4.403 6.32 BYWL-2 16.966 18.015 25.973 7.958 60.091 3.974 15.12 DLG-1 2.486 1.099 3.036 1.937 4.975 0.739 6.73 DLG-2 2.417 0.947 2.891 1.944 4.381 1.008 4.35 NRWBEGC-1 9.394 2.899 10.843 7.944 13.376 5.818 2.30 WLBX-1 2.215 0.417 2.423 2.007 2.842 1.643 1.73 WLBX-2 2.018 0.674 2.355 1.681 3.764 0.739 5.09 ZYG-1 7.058 2.409 8.263 5.854 10.420 3.833 2.72 ZYG-2 7.289 1.970 8.274 6.304 10.822 4.706 2.30 注:Rn和Hg的浓度Q的单位分别为kBq·m−3和ng·m−3;Qmean,σ,Qmean+σ/2,Qmean-σ/2,Qmax和Qmin分别为每条测线上浓度的平均值、标准偏差、异常上限、异常下限、最大值和最小值;KQ为断层活动性指数。 表 3 土壤气剖面的平均浓度Q和释放通量F
Table 3 The average values of concentration Q and flux F at each soil gas section
剖面 FCO2/(g·m−2·d−1) FRn/(mBq·m−2·s−1) FHg/(ng·m−2·h−1) QCO2 QRn/(kBq·m−3) QHg/(ng·m−3) BYWL 11.76 39.07 7.46 0.09% 13.375 11 ZYG 15.17 12.71 0 0.23% 7.174 10 DLG 10.52 22.82 0 0.10% 2.452 12 NRWBEGC 9.38 17.25 3.69 0.22% 9.394 10 WLBX 6.54 5.17 0.62 0.13% 2.117 10 平均值 10.67 19.40 2.35 0.15% 6.902 11 表 4 土样化学组分分析测试结果
Table 4 The test results of chemical composition analysis of soil samples
剖面 CU/(Bq·kg−1) CTh/(Bq·kg−1) CRa/(Bq·kg−1) CK/(Bq·kg−1) TC含量 CHg/(ng·g−1) BYWL 39.8 46.2 28.7 616 0.972% 1.54 DLG 24.2 36.8 23.7 546 0.762% 13.30 NRWBEGC 40.2 52.7 30.6 944 0.163% 5.67 WLBX 17.6 17.6 13.0 553 0.577% 5.85 ZYG 8.1 44.5 27.2 559 2.420% 28.90 注:所采土样于2017年8月由核工业地质研究所进行检测;C为质量活度。 -
曹刚. 2001. 内蒙古地震研究[M]. 北京: 地震出版社: 1−174. Cao G. 2001. Earthquake Research in Inner Mongolia[M]. Beijing: Seismological Press: 1−174 (in Chinese).
程鉴基. 1997. 汞断层气异常与活断层关系浅析[J]. 地壳形变与地震,17(2):97–100. Cheng J J. 1997. Elementary analysis of relationship between mercury anomaly of fault product gas and active fault[J]. Crustal Deformation and Earthquake,17(2):97–100 (in Chinese).
杜建国, 李营, 崔月菊, 孙凤霞. 2018. 地震流体地球化学[M]. 北京: 地震出版社: 1−272. Du J G, Li Y, Cui Y J, Sun F X. 2018. Seismic Fluid Geochemistry[M]. Beijing: Seismological Press: 1−272 (in Chinese).
付碧宏,王萍,孔屏,郑国东,王刚,时丕龙. 2008. 四川汶川5·12大地震同震滑动断层泥的发现及构造意义[J]. 岩石学报,24(10):2237–2243. Fu B H,Wang P,Kong P,Zheng G D,Wang G,Shi P L. 2008. Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan MS8.0 earthquake and its tectonic implication[J]. Acta Petrologica Sinica,24(10):2237–2243 (in Chinese).
高立新,孙加林,张晖. 2010. 中强地震平静是汶川8.0级地震前最显著的地震活动异常[J]. 地震,30(1):90–97. doi: 10.3969/j.issn.0253-4967.2010.01.009 Gao L X,Sun J L,Zhang H. 2010. Moderate-to-strong earthquake quiescence is the most significant seismic anomaly before the Wenchuan 8.0 earthquake[J]. Earthquake,30(1):90–97 (in Chinese).
高立新,戴勇,贾宁. 2012. 鄂尔多斯块体周缘地震活动特征分析[J]. 防灾科技学院学报,14(4):70–79. doi: 10.3969/j.issn.1673-8047.2012.04.014 Gao L X,Dai Y,Jia N. 2012. Study on seismic activity characteristics in Ordos block and seismic risk analysis of northern edge[J]. Journal of Institute of Disaster Prevention,14(4):70–79 (in Chinese).
高立新,韩晓明,戴勇,李娟,杨红缨. 2017. 鄂尔多斯地块的运动特性与现今地震活动性[J]. 大地测量与地球动力学,37(4):349–354. Gao L X,Han X M,Dai Y,Li J,Yang H Y. 2017. Movement characteristics and the present seismic behavior of the Ordos block[J]. Journal of Geodesy and Geodynamics,37(4):349–354 (in Chinese).
郭正府,郑国东,孙玉涛,张茂亮,张丽红,成智慧. 2017. 中国大陆地质源温室气体释放[J]. 矿物岩石地球化学通报,36(2):204–212. doi: 10.3969/j.issn.1007-2802.2017.02.003 Guo Z F,Zheng G D,Sun Y T,Zhang M L,Zhang L H,Cheng Z H. 2017. Greenhouse gases emitted from geological sources in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,36(2):204–212 (in Chinese).
韩清. 1982. 乌兰布和沙漠的土壤地球化学特征[J]. 中国沙漠,2(3):24–31. Han Q. 1982. The geochemical characteristics of the soils in the Ulanbuh desert[J]. Journal of Desert Research,2(3):24–31 (in Chinese).
何继善. 1990. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社: 1−169. He J S. 1990. Control Source Audio-Frequency Magnetotelluric[M]. Changsha: Central South University of Technology Press: 1−169 (in Chinese).
李帝铨,底青云,王光杰,李英贤,石昆法,岳安平,白大为. 2008. CSAMT探测断层在北京新区规划中的应用[J]. 地球物理学进展,23(6):1963–1969. Li D Q,Di Q Y,Wang G J,Li Y X,Shi K F,Yu A P,Bai D W. 2008. Fault detection by CSAMT and its application to new district planning in Beijing[J]. Progress in Geophysics,23(6):1963–1969 (in Chinese).
李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009 Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).
刘菁华. 2006. 活断层上覆盖层中氡迁移的数值模拟及反演拟合[D]. 吉林: 吉林大学: 23−27. Liu J H. 2006. Numerical Simulation, Inversion Fitting of Radon Migration in the Overburden Above Active Fault[D]. Jilin: Jilin University: 23−27 (in Chinese).
马向贤,郑国东,梁收运,樊成意,王自翔,梁明亮. 2012. 地质甲烷对大气甲烷源与汇的贡献[J]. 矿物岩石地球化学通报,31(2):139–145. doi: 10.3969/j.issn.1007-2802.2012.02.007 Ma X X,Zheng G D,Liang S Y,Fan C Y,Wang Z X,Liang M L. 2012. Contributions of geologic methane to atmospheric methane sources and sinks[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(2):139–145 (in Chinese).
牟雪松,马俊,王永达,范育新. 2018. 粒度分布的端元建模分析及检验:以 " 吉兰泰—河套” 盆地西部DK-12钻孔晚第四纪沉积物为例[J]. 古地理学报,20(3):489–500. doi: 10.7605/gdlxb.2018.03.036 Mou X S,Ma J,Wang Y D,Fan Y X. 2018. End-member modeling analysis and test of grain-size distribution:A case from the Late Quaternary sediments of borehole DK-12 in the western Jilantai-Hetao basin[J]. Journal of Paleogeography,20(3):489–500 (in Chinese).
邵永新. 2012. 土壤氡方法用于断层活动性研究的讨论[J]. 中国地震,28(1):51–60. doi: 10.3969/j.issn.1001-4683.2012.01.006 Shao Y X. 2012. A discussion of fault activity research using the measurement results of soil radon[J]. Earthquake Research in China,28(1):51–60 (in Chinese).
石昆法,张庚利,李英贤,于昌明. 2001. CSAMT法在山东蓬家夼地区层间滑动角砾型金矿成矿预测中的应用[J]. 地质与勘探,37(1):86–90. doi: 10.3969/j.issn.0495-5331.2001.01.020 Shi K F,Zhang G L,Li Y X,Yu C M. 2001. Application of CSAMT method in predicting interlayer sliding breccia type gold deposits in Pengjiakuang region,Shandong Province[J]. Geology and Prospecting,37(1):86–90 (in Chinese).
谭儒蛟,胡瑞林,徐文杰,梁辉,曾如意,龚飞. 2007. 金沙江龙蟠变形体隐伏构造CSAMT探测与解译[J]. 地球物理学进展,22(1):283–288. doi: 10.3969/j.issn.1004-2903.2007.01.042 Tan R J,Hu R L,Xu W J,Liang H,Zeng R Y,Gong F. 2007. CSAMT exploration and geological interpretation of perdue tectonic structures of Longpan deformation slope in Jinsha River[J]. Progress in Geophysics,22(1):283–288 (in Chinese).
王华林,郑国东,王纪强,付海清,马向贤,胡超. 2017. 山东黄县弧形断裂带断层泥铁元素化学种分布特征及其地震地质意义[J]. 中国地震,33(2):248–259. doi: 10.3969/j.issn.1001-4683.2017.02.006 Wang H L,Zheng G D,Wang J Q,Fu H Q,Ma X X,Hu C. 2017. Iron speciation of fault gouge from the Huangxian arc fault in Shandong Province,eastern China and its seismo-geological implications[J]. Earthquake Research in China,33(2):248–259 (in Chinese).
王萍,付碧宏,张斌,孔屏,王刚. 2009. 汶川8.0级地震地表破裂带与岩性关系[J]. 地球物理学报,52(1):131–139. Wang P,Fu B H,Zhang B,Kong P,Wang G. 2009. Relationships between surface ruptures and lithologic characteristics of the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,52(1):131–139 (in Chinese).
王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101. doi: 10.11939/jass.2017.01.008 Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).
王云,赵慈平,冉华,陈坤华. 2015. 地壳流体CO2的释放与地震关系:回顾与展望[J]. 地震研究,38(1):119–130. doi: 10.3969/j.issn.1000-0666.2015.01.016 Wang Y,Zhao C P,Ran H,Chen K H. 2015. The relationship between the release of crustal fluid CO2 and earthquake:Retrospect and prospect[J]. Journal of Seismological Research,38(1):119–130 (in Chinese).
魏国孝. 2011. 现代吉兰泰盆地地下水演化规律及古大湖补给水源研究[D]. 兰州: 兰州大学: 1−143. Wei G X. 2011. Research on Groundwater Recharge and Evolution in Jilantai Basin and Water Supply for Jilantai-Hetao Paleo-Megalake[D]. Lanzhou: Lanzhou University: 1−143 (in Chinese).
徐伟进,高孟潭,任雪梅,冯希杰. 2008. 鄂尔多斯地块区内地震活动特征的初步研究[J]. 中国地震,24(4):388–398. doi: 10.3969/j.issn.1001-4683.2008.04.009 Xu W J,Gao M T,Ren X M,Feng X J. 2008. Study on seismic activity characteristics in the Ordos block[J]. Earthquake Research in China,24(4):388–398 (in Chinese).
杨江. 2018. 首都圈地区土壤气体地球化学特征[D]. 北京: 中国地震局地震预测研究所: 1−63. Yang J. 2018. Soil Gas Geochemistry Characteristics in the Capital Area of China[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 1−63 (in Chinese).
杨丽萍. 2008. 基于遥感与DEM的 " 吉兰泰—河套” 古大湖重建研究[D]. 兰州: 兰州大学: 1−10. Yang L P. 2008. Reconstruction of Paleo-Megalake ‘Jilantai-Hetao’ Based on Remote Sensing and DEM[D]. Lanzhou: Lanzhou University: 1−10 (in Chinese).
于昌明. 1998. CSAMT方法在寻找隐伏金矿中的应用[J]. 地球物理学报,41(1):133–138. doi: 10.3321/j.issn:0001-5733.1998.01.015 Yu C M. 1998. The application of CSAMT method in looking for hidden gold mine[J]. Acta Geophysica Sinica,41(1):133–138 (in Chinese).
张复. 2015. 吉兰泰盆地MIS 3阶段沉积环境及生态环境研究[D]. 兰州: 兰州大学: 50−60. Zhang F. 2015. The Sedimentary and Ecological Environment Research of Jilantai Basin During the MIS 3[D]. Lanzhou: Lanzhou University: 50−60 (in Chinese).
赵建明,李营,陈志,刘兆飞,赵荣琦,荣伟健. 2018. 蔚县—广灵断裂和口泉断裂气体排放和断裂活动性关系[J]. 地震地质,40(6):1402–1416. Zhao J M,Li Y,Chen Z,Liu Z F,Zhao R Q,Rong W J. 2018. Correlation between gas geochemical emission and fault activity of the Yuxian-Guangling and Kouquan faults[J]. Seismology and Geology,40(6):1402–1416 (in Chinese).
周晓成,郭文生,杜建国,王传远,刘雷. 2007. 呼和浩特地区隐伏断层土壤气氡、汞地球化学特征[J]. 地震,27(1):70–76. doi: 10.3969/j.issn.1001-8662.2007.01.010 Zhou X C,Guo W S,Du J G,Wang C Y,Liu L. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake,27(1):70–76 (in Chinese).
周晓成,孙凤霞,陈志,吕超甲,李静,仵柯田,杜建国. 2017. 汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,33(1):291–303. Zhou X C,Sun F X,Chen Z,Lü C J,Li J,Wu K T,Du J G. 2017. Degassing of CO2,CH4,Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica,33(1):291–303 (in Chinese).
Annunziatellis A,Beaubien S E,Bigi S,Ciotoli G,Coltella M,Lombardi S. 2008. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy):Implications for CO2 geological storage[J]. Int J Greenh Gas Con,2(3):353–372. doi: 10.1016/j.ijggc.2008.02.003
Baixeras C,Erlandsson B,Font L,Jönsson G. 2001. Radon emanation from soil samples[J]. Radiat Meas,34(1/6):441–443.
Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas:The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.
Becken M,Ritter O,Park S K,Bedrosian P A,Weckmann U,Weber M. 2008. A deep crustal fluid channel into the San Andreas fault system near Parkfield,California[J]. Geophys J Int,173(2):718–732. doi: 10.1111/j.1365-246X.2008.03754.x
Chen Z,Zhou X,Du J,Xie C,Liu L,Li Y,Yi L,Liu H,Cui Y. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan,China[J]. Nat Hazards Earth Syst Sci,15(6):1149–1156. doi: 10.5194/nhess-15-1149-2015
Chen Z,Li Y,Liu Z F,Wang J,Zhou X C,Du J G. 2018. Radon emission from soil gases in the active fault zones in the capital of China and its environmental effects[J]. Sci Rep,8(1):16772. doi: 10.1038/s41598-018-35262-1
Chen Z,Li Y,Liu Z F,Zheng G D,Xu W,Yan W,Yi L. 2019. CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar Basin,NW China:Origin,output,and relation to regional tectonics[J]. J Geophys Res,124(5):1–15. doi: 10.1029/2018JB016822
Etiope G,Martinelli G. 2002. Migration of carrier and trace gases in the geosphere:An overview[J].Phys Earth Planet Inter,129(3/4):185–204.
Faulkner D R,Lewis A C,Rutter E H. 2003. On the internal structure and mechanics of large strike-slip fault zones:Field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics,367(3/4):235–251.
Finizola A,Aubert M,Revil A,Schütze C,Sortino F. 2009. Importance of structural history in the summit area of Stromboli during the 2002−2003 eruptive crisis inferred from temperature,soil CO2,self-potential,and electrical resistivity tomography[J]. J Volcanol Geoth Res,183(3/4):213–227.
Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai T H. 2017. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032
Ghosh D,Deb A,Sengupta R. 2009. Anomalous radon emission as precursor of earthquake[J]. J Appl Geophys,69(2):67–81. doi: 10.1016/j.jappgeo.2009.06.001
Giammanco S,Immè G,Mangano G,Morelli D,Neri M. 2009. Comparison between different methodologies for detecting radon in soil along an active fault:The case of the Pernicana fault system,Mt. Etna (Italy)[J]. Appl Radiat Isotopes,67(1):178–185. doi: 10.1016/j.apradiso.2008.09.007
Han X,Li Y,Du J,Zhou X,Xie C,Zhang W. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J]. Nat Hazards Earth Syst Sci,14(10):2803–2815. doi: 10.5194/nhess-14-2803-2014
Irwin W P,Barnes I. 1980. Tectonic relations of carbon dioxide discharges and earthquakes[J]. J Geophys Res,85(B6):3115–3121. doi: 10.1029/JB085iB06p03115
Italiano F,Bonfanti P,Ditta M,Petrini R,Slejko F. 2009. Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy):Geochemical evidence of CO2 production and degassing over a seismically active area[J]. Chem Geol,266(1/2):76–85.
King C Y. 1986. Gas geochemistry applied to earthquake prediction:An overview[J]. J Geophys Res,91(B12):12269–12281. doi: 10.1029/JB091iB12p12269
King C Y,King B S,Evans W C,Zhang W. 1996. Spatial radon anomalies on active faults in California[J]. Appl Geochem,11(4):497–510. doi: 10.1016/0883-2927(96)00003-0
Lehmann B E,Lehmann M,Neftel A,Tarakanov S V. 2000. Radon-222 monitoring of soil diffusivity[J]. Geophys Res Lett,27(23):3917–3920. doi: 10.1029/1999GL008469
Lehmann B E,Ihly B,Salzmann S,Conen F,Simon E. 2004. An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J]. Radiat Meas,38(1):43–50. doi: 10.1016/j.radmeas.2003.08.001
Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)
Ma X X,Zheng G D,Liang S Y,Xu W. 2015. Geochemical characteristics of absorbed gases in fault gouge from the Daliushu Dam area,NW China[J]. Geochem J,49(4):413–419. doi: 10.2343/geochemj.2.0365
Papp B,Deák F,Horváth Á,Kiss Á,Rajnai G,Szabó C. 2008. A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole[J]. J Environ Radioactiv,99(11):1731–1735. doi: 10.1016/j.jenvrad.2008.05.005
Revil A,Finizola A,Sortino F,Ripepe M. 2004. Geophysical investigations at Stromboli volcano,Italy:Implications for ground water flow and paroxysmal activity[J]. Geophys J Int,157(1):426–440. doi: 10.1111/j.1365-246X.2004.02181.x
Schütze C,Vienken T,Werban U,Dietrich P,Finizola A,Leven C. 2012. Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones[J]. J Appl Geophys,82:129–136. doi: 10.1016/j.jappgeo.2012.03.002
Seminsky K Z,Bobrov A A. 2009. Radon activity of faults (western Baikal and southern Angara areas)[J]. Russ Geol Geophys,50(8):682–692. doi: 10.1016/j.rgg.2008.12.010
Seminsky K Z,Demberel S. 2013. The first estimations of soil-radon activity near faults in Central Mongolia[J]. Radiat Meas,49(1):19–34.
Seminsky K Z,Bobrov A A,Demberel S. 2014. Variations in radon activity in the crustal fault zones:Spatial characteristics[J]. Izv-Phys Solid Eart+,50(6):795–813. doi: 10.1134/S1069351314060081
Sun X L,Yang P T,Xiang Y,Si X Y,Liu D Y. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosci J,22(2):227–239. doi: 10.1007/s12303-017-0028-2
Toutain J P,Baubron J C. 1999. Gas geochemistry and seismotectonics:A review[J]. Tectonophysics,304(1/2):1–27.
Wang D Y,He L,Shi X J,Wei S Q,Feng X B. 2006. Release flux of mercury from different environmental surfaces in Chongqing,China[J]. Chemosphere,64(11):1845–1854. doi: 10.1016/j.chemosphere.2006.01.054
Winkler R,Ruckerbauer F,Bunzl K. 2001. Radon concentration in soil gas:A comparison of the variability resulting from different methods,spatial heterogeneity and seasonal fluctuations[J]. Sci Total Environ,272(1/3):273–282.
Woodruff L G,Cannon W F,Eberl D D,Smith D B,Kilburn J E,Horton J D,Garrett R G,Klassen R A. 2009. Continental-scale patterns in soil geochemistry and mineralogy:Results from two transects across the United States and Canada[J]. Appl Geochem,24(8):1369–1381. doi: 10.1016/j.apgeochem.2009.04.009
Yang Y,Li Y,Guan Z J,Chen Z,Zhang L,Lü C J,Sun F X. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan,southwestern of China[J]. Appl Geochem,89:23–33. doi: 10.1016/j.apgeochem.2017.11.006
Zarroca M,Linares R,Bach J,Roqué C,Moreno V,Font L,Baixeras C. 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults:The Amer fault example (Pyrenees,NE Spain)[J].Environ Earth Sci,67(3):889–910. doi: 10.1007/s12665-012-1537-y
Zheng G D,Fu B H,Takahashi Y,Miyahara M,Kuno A,Matsuo M,Miyashita Y. 2008. Iron speciation in fault gouge from the Ushikubi fault zone central Japan[J]. Hyperfine Interact,186(1/3):39–52.
Zheng G D,Xu S,Liang S Y,Shi P L,Zhao J. 2013. Gas emission from the Qingzhu River after the 2008 Wenchuan earthquake,Southwest China[J]. Chem Geol,339:187–193. doi: 10.1016/j.chemgeo.2012.10.032
Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11(1):5. doi: 10.1186/1467-4866-11-5
Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1
-
期刊类型引用(6)
1. 郭昱琴,龚丽文,郭瑛霞,胡久常,李盛. 定点形变资料变化的动力学机制——以五指山台定点形变为例. 大地测量与地球动力学. 2023(08): 869-874 . 百度学术
2. 李萌,卢和雄,赵爱平,严丽. 有限元建模与实测应变分析——以九江地震台为例. 大地测量与地球动力学. 2023(10): 1063-1067 . 百度学术
3. 刘珠妹,张景发,李盛乐. 2000—2018年全国形变台站周边环境时空变化特征及对垂直摆观测影响分析. 地震工程学报. 2021(03): 583-593 . 百度学术
4. 龚丽文,陈丽娟,郭卫英,陈涛,唐小勇. 奉节钻孔应变前兆异常机理分析——区域应力场应力传递的结果. 地震工程学报. 2021(05): 1087-1094+1102 . 百度学术
5. 龚丽文,陈丽娟,吕品姬,张燕,郭卫英,肖家强. 黔江台水管仪与垂直摆预报效能对比分析. 地震. 2021(04): 168-179 . 百度学术
6. 袁曲,许裕之,吕品姬,张辉,王慧,宋潇潇. 宜昌台三类地倾斜仪观测数据的对比研究. 地震工程学报. 2019(06): 1536-1544 . 百度学术
其他类型引用(0)