中国大陆地区宽频带地震台网台基噪声特征

王芳, 王伟涛, 龙剑锋, 牟磊育, 傅磊

王芳, 王伟涛, 龙剑锋, 牟磊育, 傅磊. 2019: 中国大陆地区宽频带地震台网台基噪声特征. 地震学报, 41(5): 569-584. DOI: 10.11939/jass.20190031
引用本文: 王芳, 王伟涛, 龙剑锋, 牟磊育, 傅磊. 2019: 中国大陆地区宽频带地震台网台基噪声特征. 地震学报, 41(5): 569-584. DOI: 10.11939/jass.20190031
Wang Fang, Wang Weitao, Long Jianfeng, Mu Leiyu, Fu Lei. 2019: Seismic noise characteristics of broad-band seismic networks in Chinese mainland. Acta Seismologica Sinica, 41(5): 569-584. DOI: 10.11939/jass.20190031
Citation: Wang Fang, Wang Weitao, Long Jianfeng, Mu Leiyu, Fu Lei. 2019: Seismic noise characteristics of broad-band seismic networks in Chinese mainland. Acta Seismologica Sinica, 41(5): 569-584. DOI: 10.11939/jass.20190031

中国大陆地区宽频带地震台网台基噪声特征

基金项目: 国家重点研发项目(2018YFC1503200)、中国地震局地球物理研究所基本业务专项(DQJB18B12、DQJB19B25)和国家自然科学基金(NSFC 41804063)共同资助
详细信息
    通讯作者:

    王伟涛: e-mail: wangwt@cea-igp.ac.cn

  • 中图分类号: P315.3

Seismic noise characteristics of broad-band seismic networks in Chinese mainland

  • 摘要: 利用中国地震台网880个宽频带地震台站2014年1月至2015年12月的垂直分量连续波形记录,通过计算每个台站的噪声功率谱密度和概率密度函数,对中国大陆地区的台基噪声水平进行了初步分析。结果表明:中国大陆的噪声水平在不同频带呈现不同的分区特性,其中高频带(0.1—1 s)噪声水平在西部和北部较低,而在中东部地区较高,京津冀和东南沿海地区最高;城市噪声水平高于人口稀少地区,表明高频带噪声与交通、工业等人文活动强度具有较高的相关性;在盆地及其边缘地区,高频带噪声水平高于周边山区,可能与沉积层的放大效应有关;微震噪声(1—20 s)主要来自于中国东部海岸线的海洋活动作用,其强度由东南沿海向内陆地区逐渐变弱。基于噪声的分区特征,利用概率密度函数的第5和第95百分位数获取了31个地震台网的高低噪声基线,相比全球新高低噪声模型,该基线能够对台站观测状态进行更有效的判别。
    Abstract: Using the vertical continuous waveform recordings of 880 broadband seismic stations in China Seismic Network from January 2014 to December 2015, we calculated power spectral densities (PSDs) and probability density functions (PDFs) over the entire period for each station, and then investigated the characteristics of seismic noise in Chinese mainland. The results indicate that the spatial distribution of noise levels is characterized by obvious zoning for different period bands in Chinese mainland. The high-frequency (0.1−1 s) noise level is lower in the western and northern regions, while higher in the central and eastern regions, especially in the Beijing-Tianjin-Hebei and southeast coastal areas. Densely populated areas have higher noise level than sparsely populated ones, suggesting that high-frequency noise level is related to the intensity distribution of human activities such as transportation, industry. Meanwhile, the high-frequency noise level near the basin is higher than the mountainous areas, which is probably caused by the amplification effect of the sedimentary layer. The microseism energy (1−20 s) mainly results from the coastline of eastern China, and its intensity gradually decreases from the southeastern coastal lines to the inland regions. Based on the zoning characteristics, the 5th and 95th percentiles of PDFs were used to obtain the high and low noise baselines for each network. Compared with the global new high and low noise models, they are much more effective to identify abnormal signals during seismic observations.
  • 图  1   中国大陆地区宽频带固定台站分布图

    Figure  1.   Distribution of permanent broad-band stations in Chinese mainland

    图  2   基于甘肃高台台站垂直分量的34 626条功率谱密度(PSD) 统计得到的概率密度函数

    Figure  2.   Probability density function constructed by using 34 626 PSDs of vertical components recorded at the station GS.GTA

    图  3   常见地震计的自噪声曲线

    Figure  3.   Self-noise curves of some common seismometers

    图  4   基于甘肃高台台站34 626条PSD曲线的PDF中值统计所得的噪声水平日变化

    Figure  4.   Diurnal variations of PDF median values for the station GS.GTA constructed using 34 626 PSDs

    图  5   甘肃高台台站 (a) 和福建宁德漳湾台站 (b) 2014年噪声水平的季节性变化图

    Figure  5.   Seasonal variations of noise level for the stations GS.GTA (a) and FJ.NDZW (b) in 2014

    图  6   0.1—1 s (a),2—10 s (b),10—20 s (c)和20—50 s (d)频带的噪声中值分布

    Figure  6.   Distribution of noise median value for the period bands 0.1−1 s (a), 2−10 s (b),10−20 s (c) and 20−50 s (d)

    图  7   次级微震短周期段2—6 s (a)和长周期段6—10 s (b)的噪声中值分布

    Figure  7.   Distribution of noise median value for the secondary microseism in short period 2−6 s (a) and long period 6−10 s (b)

    图  8   中国大陆不同台网的PDF图像

    Figure  8.   PDFs for different networks of Chinese mainland

    图  9   不同台网的噪声参考线

    Figure  9.   Noise baselines for different networks

    图  10   安徽台网的异常噪声功率谱密度及其对应的时间序列

    (a) 噪声功率谱密度(PSD)曲线;(b) 无异常干扰时;(c) 阶跃标定;(d) ML3.0地震;(e) 出现零点漂移时;(f) 存在长周期干扰时

    Figure  10.   Examples of abnormal PSDs and their time series for the Anhui network

    (a) Noise power spectral density;(b) Quiet data;(c) Calibration pulse;(d) ML3.0 earthquake;(e) Zero drifts;(f) Long-period interference

  • 葛洪魁,陈海潮,欧阳飚,杨微,张梅,袁松湧,王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,56(3):857–868. doi: 10.6038/cjg20130315

    Ge H K,Chen H C,Ouyang B,Yang W,Zhang M,Yuan S Y,Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J].Chinese Journal of Geophysics,56(3):857–868 (in Chinese).

    国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据[EB/OL]. [2018−01−01]. 中国地震局地球物理研究所. doi:10.11998/SeisDmc/SN. http://www.seisdmc.ac.cn.

    Data Management Centre of China National Seismic Network. 2007. Waveform data of China National Seismic Network[EB/OL].[2018−01−01]. Institute of Geophysics, China Earthquake Administration. doi:10.11998/SeisDmc/SN. http://www.seisdmc.ac.cn (in Chinese).

    王奡,罗银河,吴树成,沈超,姜小欢,徐义贤. 2017. 西准噶尔地区地震背景噪声源分析[J]. 地球物理学报,60(4):1376–1388. doi: 10.6038/cjg20170412

    Wang A,Luo Y H,Wu S C,Shen C,Jiang X H,Xu Y X. 2017. Source analysis of seismic ambient noise in the western Junggar area[J]. Chinese Journal of Geophysics,60(4):1376–1388 (in Chinese).

    王俊,徐戈,孙业君. 2009. 江苏省区域地表背景噪声特性的分析[J]. 地震研究,32(2):155–161. doi: 10.3969/j.issn.1000-0666.2009.02.009

    Wang J,Xu G,Sun Y J. 2009. Analysis on background seismic noise characteristics in Jiangsu Province[J]. Journal of Seismological Research,32(2):155–161 (in Chinese).

    吴建平,欧阳飚,王未来,姚志祥,袁松湧. 2012. 华北地区地震环境噪声特征研究[J]. 地震学报,34(6):818–829. doi: 10.3969/j.issn.0253-3782.2012.06.008

    Wu J P,Ouyang B,Wang W L,Yao Z X,Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica,34(6):818–829 (in Chinese).

    许卫卫,袁松湧,艾印双,徐天龙. 2017. 多通道相关分析用于宽频带地震仪自噪声检测[J]. 地球物理学报,60(9):3466–3474. doi: 10.6038/cjg20170916

    Xu W W,Yuan S Y,Ai Y S,Xu T L. 2017. Applying multiple channel correlation technique in the self-noise measurement of broadband seismographs[J]. Chinese Journal of Geophysics,60(9):3466–3474 (in Chinese).

    张尉,陈棋福,丘学林,陈颙. 2009. 首都圈数字地震台网对微弱爆破信号的检测能力[J]. 地球物理学报,52(3):681–690.

    Zhang W,Chen Q F,Qiu X L,Chen Y. 2009. Weak explosion signal detection by the Beijing metropolitan digital seismic network[J]. Chinese Journal of Geophysics,52(3):681–690 (in Chinese).

    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. " 国家数字测震台网数据备份中心” 技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031

    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.031

    周连庆,Song X D,赵翠萍. 2017. 中国大陆背景噪声强度时空分布[J]. 地震,37(2):1–16. doi: 10.3969/j.issn.0235-4975.2017.02.001

    Zhou L Q,Song X D,Zhao C P. 2017. Temporal and spatial distribution and images of ambient noise strength in mainland China[J]. Earthquake,37(2):1–16 (in Chinese).

    Abd el-aal A K,Soliman M S. 2013. New seismic noise models obtained using very broadband stations[J]. Pure Appl Geophys,170(11):1849–1857. doi: 10.1007/s00024-013-0640-7

    Berger J,Davis P,Ekström G. 2004. Ambient earth noise:A survey of the global seismographic network[J]. J Geophys Res,109(B11):B11307.

    Boese C M,Wotherspoon L,Alvarez M,Malin P. 2015. Analysis of anthropogenic and natural noise from multilevel borehole seismometers in an urban environment,Auckland,New Zealand[J]. Bull Seismol Soc Am,105(1):285–299. doi: 10.1785/0120130288

    Bormann P, Wielandt E. 2013. Seismic signals and noise[M]//New Manual of Seismological Observatory Practice 2(NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum: 1−62.

    Brown D,Ceranna L,Prior M,Mialle P,Le Bras R J. 2014. The IDC seismic,hydroacoustic and infrasound global low and high noise models[J].Pure Appl Geophys,171(3/4/5):361–375.

    Bungum H,Mykkeltveit S,Kvaerna T. 1985. Seismic noise in Fennoscandia,with emphasis on high frequencies[J]. Bull Seismol Soc Am,75(6):1489–1513.

    Castellaro S,Mulargia F. 2012. A statistical low noise model of the Earth[J]. Seismol Res Lett,83(1):39–48. doi: 10.1785/gssrl.83.1.39

    Cessaro R K. 1994. Sources of primary and secondary microseisms[J]. Bull Seismol Soc Am,84(1):142–148.

    Cooley J W,Tukey J W. 1965. An algorithm for the machine calculation of complex Fourier series[J]. Math Comput,19(90):297–301. doi: 10.1090/S0025-5718-1965-0178586-1

    Custódio S,Dias N A,Caldeira B,Carrilho F,Carvalho S,Corela C,Díaz J,Narciso J,Madureira G,Matias L,Haberland C,WILAS Team. 2014. Ambient noise recorded by a dense broadband seismic deployment in western Iberia[J]. Bull Seismol Soc Am,104(6):2985–3007. doi: 10.1785/0120140079

    De la Torre T L,Sheehan A F. 2005. Broadband seismic noise analysis of the Himalayan Nepal Tibet seismic experiment[J]. Bull Seismol Soc Am,95(3):1202–1208. doi: 10.1785/0120040098

    Demuth A,Ottemöller L,Keers H. 2016. Ambient noise levels and detection threshold in Norway[J]. J Seismol,20(3):889–904. doi: 10.1007/s10950-016-9566-8

    Ermert L,Sager K,Afanasiev M,Boehm C,Fichtner A. 2017. Ambient seismic source inversion in a heterogeneous Earth:Theory and application to the Earth’s hum[J]. J Geophys Res,122(11):9184–9207. doi: 10.1002/2017JB014738

    Evangelidis C P,Melis N S. 2012. Ambient noise levels in Greece as recorded at the Hellenic unified seismic network[J]. Bull Seismol Soc Am,102(6):2507–2517. doi: 10.1785/0120110319

    Green D N,Bastow I D,Dashwood B,Nippress S E J. 2016. Characterizing broadband seismic noise in central London[J]. Seismol Res Lett,88(1):113–124.

    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177

    Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5

    Koper K D,Seats K,Benz H. 2010. On the composition of Earth’s short-period seismic noise field[J]. Bull Seismol Soc Am,100(2):606–617. doi: 10.1785/0120090120

    Koper K D,Burlacu R. 2015. The fine structure of double-frequency microseisms recorded by seismometers in North America[J]. J Geophys Res,120(3):1677–1691. doi: 10.1002/2014JB011820

    Landès M,Huban F,Shapiro N M,Paul A,Campillo M. 2010. Origin of deep ocean microseisms by using teleseismic body waves[J]. J Geophys Res,115(B5):B05302.

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc London,Ser A,243(857):1–35. doi: 10.1098/rsta.1950.0012

    Malagnini L,Rovelli A,Hough S E,Seeber L. 1993. Site amplification estimates in the Garigliano Valley,Central Italy,based on dense array measurements of ambient noise[J]. Bull Seismol Soc Am,83(6):1744–1755.

    Marzorati S,Bindi D. 2006. Ambient noise levels in north central Italy[J]. Geochem Geophys Geosyst,7(9):Q09010.

    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001

    McNamara D E, Boaz R I. 2005. Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package[R]. Reston: U.S. Geological Survey: 1−30.

    McNamara D E,Hutt C R,Gee L S,Benz H M,Buland R P. 2009. A method to establish seismic noise baselines for automated station assessment[J]. Seismol Res Lett,80(4):628–637. doi: 10.1785/gssrl.80.4.628

    Nawa K,Suda N,Fukao Y,Sato T,Aoyama Y,Shibuya K. 1998. Incessant excitation of the Earth’s free oscil-lations[J]. Earth Planets Space,50(1):3–8. doi: 10.1186/BF03352080

    Nishida K,Montagner J P,Kawakatsu H. 2009. Global surface wave tomography using seismic hum[J]. Science,326(5949):112. doi: 10.1126/science.1176389

    Parolai S,Bormann P,Milkereit C. 2001. Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements[J]. J Earthq Eng,5(4):541–564. doi: 10.1080/13632460109350405

    Peterson J. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: U.S. Geological Survey: 93−322.

    Pedersen H A,Krüger F. 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield[J]. Geophys J Int,168(1):197–210. doi: 10.1111/j.1365-246X.2006.03177.x

    Rastin S J,Unsworth C P,Gledhill K P,McNamara D E. 2012. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bull Seismol Soc Am,102(1):98–113. doi: 10.1785/0120110064

    Rhie J,Romanowicz B. 2006. A study of the relation between ocean storms and the Earth’s hum[J]. Geochem Geophys Geosyst,7(10):L07614.

    Ringler A T,Hutt C R. 2010. Self-noise models of seismic instruments[J]. Seismol Res Lett,81(6):972–983. doi: 10.1785/gssrl.81.6.972

    Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614.

    Sheen D H,Shin J S,Kang T S. 2009. Seismic noise level variation in South Korea[J]. Geosci J,13(2):183–190. doi: 10.1007/s12303-009-0018-0

    Sorrells G G. 1971. A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field[J]. Geophys J Int,26(1/4):71–82.

    Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res,111(B10):B10306. doi: 10.1029/2005JB004237

    Templeton M. 2014. Tutorials: Waveforms and their power spectral density expressions[EB/OL]. http://ds.iris.edu/ds/nodes/dmc/tutorials/waveforms-and-their-power-spectral-density-expressions/.

    Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287

    Wilson D,Leon J,Aster R,Ni J,Schlue J,Grand S,Semken S,Baldridge S,Gao W. 2002. Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States[J]. Bull Seismol Soc Am,92(8):3335–3342. doi: 10.1785/0120010234

    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S D,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res,123(5):3923–3942. doi: 10.1029/2017JB015291

    Xu Y,Koper K D,Burlacu R. 2017. Lakes as a source of short-period (0.5−2 s) microseisms[J]. J Geophys Res,122(10):8241–8256. doi: 10.1002/2017JB014808

    Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008.

    Zhan Z W,Tsai V C,Clayton R W. 2013. Spurious velocity changes caused by temporal variations in ambient noise frequency content[J]. Geophys J Int,194(3):1574–1581. doi: 10.1093/gji/ggt170

图(11)
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  832
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-10-15
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回