Regional gravity field model constructed by the least squares collocation
-
摘要:
基于非均匀分布的陆地重力观测数据,重构局部重力场模型是区域重力资料处理与解释的重要环节。本文对比了多种局部重力场建模方法,并以EGM2008模型提供的自由空气重力异常模型重采样数据进行测试,综合比较了不同噪声条件下不同建模方法的实际效果。结果表明:在不同噪声水平下,优选出适合重力位场问题的协方差函数后,最小二乘配置法的建模效果优于其它方法。
Abstract:Based on the non-uniform distribution of terrestrial gravity observation data, the reconstruction of local gravity field model is a key to the processing and interpretation of regional gravity data. In this paper, a variety of local gravity field modeling methods are compared, and the resampling data of the free air gravity anomaly model provided by the EGM2008 model are tested, and the actual effects of different modeling methods under different noise conditions are compared. The results show that the least squares collocation method is better than other ones in modeling when the covariance function suitable for gravity potential field problem is optimized at different noise levels.
-
Keywords:
- least-squares collocation /
- local gravity field /
- noise /
- covariance function /
- gravity model
-
-
图 2 不同插值法网格化结果对比
(a) 仿真重力异常场;(b) 反距离加权法插值结果;(c) 最小曲率法插值结果;(d) 最小二乘配置法插值结果
Figure 2. Comparison of meshing results of different interpolation methods
(a) Simulated gravity anomaly field;(b) Inverse distance weighting interpolation results;(c) Minimum curvature interpolation results;(d) Least squares collocation interpolation results
图 5 采用T-R协方差函数所得的最小二乘配置参数拟合结果
(a) 协方差函数拟合结果图;(b) 参数A对协方差函数的影响;(c) 参数r′对协方差函数的影响;(d) 参数n对协方差函数的影响
Figure 5. Least-squares collocation parameter fitted by T-R covariance function
(a) Result by fitting covariance function;(b) The effect of parameter A on the covariance function;(c) The effect of parameter r′ on the covariance function;(d) The effect of parameter n on the covariance function
图 6 基于不同插值法的重力场模型对比
(a) 自由空气重力异常场;(b) 最小曲率法插值结果;(c) 反距离加权法插值结果;(d) 最小二乘配置法插值结果
Figure 6. Comparison of gravity field models bassed on different interpolation method
(a) Free air gravity anomaly field;(b) Interpolation result of minimum curvature method;(c) Interpolation result of inverse distance weighting method;(d) Interpolation result of least square collocation method
-
陈石,徐伟民,王谦身. 2017. 应用Slepian局部谱方法解算中国大陆重力场球谐模型[J]. 测绘学报,46(8):952–960. doi: 10.11947/j.AGCS.2017.20150542 Chen S,Xu W M,Wang Q S. 2017. The spherical harmonic model of gravity field in mainland China by Slepian local spectrum method[J]. Acta Geodaetica et Cartographica Sinica,46(8):952–968 (in Chinese).
管守奎,瞿伟,蒋军. 2015. 最小二乘配置与REHSM求解GPS应变场的方法[J]. 大地测量与地球动力学,35(4):604–607. Guan S K,Qu W,Jiang J. 2015. The application and method of GPS strain field using the least square collocation and REHSM[J]. Journal of Geodesy and Geodynamics,35(4):604–607 (in Chinese).
江在森,刘经南. 2010. 应用最小二乘配置建立地壳运动速度场与应变场的方法[J]. 地球物理学报,53(5):1109–1117. doi: 10.3969/j.issn.0001-5733.2010.05.011 Jiang Z S,Liu J N. 2010. The method in establishing strain field and velocity field of crustal movement using least squares collo-cation[J]. Chinese Journal of Geophysics,53(5):1109–1117 (in Chinese).
刘敏,王昆,邓凯亮,黄辰虎,黄谟涛,欧阳永忠. 2013. 最小二乘配置中两种局部协方差函数的比较[J]. 海洋测绘,33(2):16–19. doi: 10.3969/j.issn.1671-3044.2013.02.005 Liu M,Wang K,Deng K L,Huang C H,Huang M T,Ouyang Y Z. 2013. Comparison of different local covariance functions in least-squares collocation[J]. Hydrographic Surveying and Charting,33(2):16–19 (in Chinese).
彭泽辉,李辉,申重阳,孙少安. 2010. 基于最小二乘配置的重力变化插值方法[J]. 大地测量与地球动力学,30(3):43–46. Peng Z H,Li H,Shen C Y,Sun S A. 2010. Interpolation method based on least squares collocation for dynamic gravity change[J]. Journal of Geodesy and Geodynamics,30(3):43–46 (in Chinese).
沙月进. 2000. 最小二乘配置法在GPS高程拟合中的应用[J]. 测绘信息与工程,(3):3–5. doi: 10.3969/j.issn.1007-3817.2000.03.002 Sha Y J. 2000. The application of least square collocation method in GPS elevation fitting[J]. Journal of Geomatics,(3):3–5 (in Chinese).
申重阳,李辉,王琪,游新兆,甘家思,卓力格图. 2002. 滇西重力断层运动时间分布特征的初步研究[J]. 大地测量与地球动力学,22(2):68–74. Shen C Y,Li H,Wang Q,You X Z,Gan J S,Zhuoli G T. 2002. Preliminary study on characteristics of time distribution of fault movement by gravity data in western Yunnan[J]. Journal of Geodesy and Geodynamics,22(2):68–74 (in Chinese).
孙和平. 2004. 重力场的时间变化与地球动力学[J]. 中国科学院院刊,19(3):189–193. doi: 10.3969/j.issn.1000-3045.2004.03.008 Sun H P. 2004. Temporal variation of gravity field and geodynamics[J]. Bulletin of the Chinese Academy of Sciences,19(3):189–193 (in Chinese).
王武星,顾国华,陈石. 2014. 利用GRACE观测资料分析日本MW9.0地震前区域重力变化特征[J]. 地震地质,36(2):523–535. doi: 10.3969/j.issn.0253-4967.2014.02.020 Wang W X,Gu G H,Chen S. 2004. Study on regional gravity changes before the MW9.0 Japan earthquake detected by GRACE[J]. Seismology and Geology,36(2):523–535 (in Chinese).
文汉江. 2000. 最小二乘配置法中局部协方差函数的计算[J]. 测绘科学,25(3):37–39. doi: 10.3771/j.issn.1009-2307.2000.03.009 Wen H J. 2000. The estimation of local covariance function in least squares collocation[J]. Developments in Surveying and Mapping,25(3):37–39 (in Chinese).
武艳强,江在森,杨国华,方颖,王武星. 2009. 利用最小二乘配置在球面上整体解算GPS应变场的方法及应用[J]. 地球物理学报,52(7):1707–1714. doi: 10.3969/j.issn.0001-5733.2009.07.005 Wu Y Q,Jiang Z S,Yang G H,Fang Y,Wang W X. 2009. The application and method of GPS strain calculation in whole mode using least square collocation in sphere surface[J]. Chinese Journal of Geophysics,52(7):1707–1714 (in Chinese).
吴怿昊,罗志才,周波阳. 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模[J]. 地球物理学报,59(3):852–864. doi: 10.6038/cjg20160308 Wu Y H,Luo Z C,Zhou B Y. 2016. Regional gravity modeling based on heterogeneous data sets by using Poisson wavelets radial basis functions[J]. Chinese Journal of Geophysics,59(3):852–864 (in Chinese).
向文. 1997. 重力插值方法研究[J]. 地壳形变与地震,17(2):59–64. Xiang W. 1997. Research on interpolation methods in gravity field[J]. Crustal Deformation and Earthquake,17(2):59–64 (in Chiense).
徐伟民,孙少波,李晓一,卢红艳,郑秋月. 2016. 基于变差函数的插值方法计算华北地区重力场变化[J]. 地震,36(4):171–185. doi: 10.3969/j.issn.1000-3274.2016.04.015 Xu W M,Sun S B,Li X Y,Lu H Y,Zheng Q Y. 2016. Calculation of gravity variations in North China based on Kriging gridding with variogram approach[J]. Earthquake,36(4):171–185 (in Chinese).
徐遵义,姜玉祥,赵亮,丁福兴. 2010. 改进的Shepard算法及其在重力异常插值中的应用[J]. 武汉大学学报(信息科学版),35(4):477–480. Xu Z Y,Jiang Y X,Zhao L,Ding F X. 2010. Improved shepard method and its application in gravity field data interpolation[J]. Geomatics and Information Science of Wuhan University,35(4):477–480 (in Chinese).
姚道荣,钟波,汪海洪,王伟. 2008. 最小二乘配置与普通Kriging法的比较[J]. 大地测量与地球动力学,28(3):77–82. Yao D R,Zhong B,Wang H H,Wang W. 2008. Comparison between least square collocation and ordinary Kriging[J]. Journal of Geodesy and Geodynamics,28(3):77–82 (in Chinese).
张皞,陈琼,丛明日. 2006. 航空重力测量数据向下延拓中空间协方差函数特性研究[J]. 测绘科学,31(4):51–53. doi: 10.3771/j.issn.1009-2307.2006.04.015 Zhang H,Chen Q,Cong M R. 2006. Research on space covariance function’s characteristic during downward continuation of airborne gravity measurement data[J]. Science of Surveying and Mapping,31(4):51–53 (in Chinese).
章传银,郭春喜,陈俊勇,张利明,王斌. 2009. EGM 2008地球重力场模型在中国大陆适用性分析[J]. 测绘学报,38(4):283–289. doi: 10.3321/j.issn:1001-1595.2009.04.001 Zhang C Y,Guo C X,Chen J Y,Zhang L M,Wang B. 2009. EGM 2008 and its application analysis in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica,38(4):283–289 (in Chinese).
Abd-Elmotaal H A,Kühtreiber N. 2013. On the interpolation of high-frequency gravity field signals in mountainous areas[J]. Contribut Geophys Geod,43(1):21–38.
Bayoud F A,Sideris M G. 2003. Two different methodologies for geoid determination from ground and airborne gravity data[J]. Geophys J R Astr Soc,155(3):914–922. doi: 10.1111/j.1365-246X.2003.02083.x
Hosse M,Pail R,Horwath M,Holzrichter N,Gutknecht B D. 2014. Combined regional gravity model of the Andean convergent subduction zone and its application to crustal density modelling in active plate margins[J]. Surv Geophys,35(6):1393–1415. doi: 10.1007/s10712-014-9307-x
Moritz H. 1980. Advanced Physical Geodesy[M]. Wichmann: Abacus Press.
Nielsen J, Tscherning C C, Jansson T R N, Forsberg R. 2012. Development and user testing of a python interface to the GRAVSOFT gravity field programs[G]//Geodesy for Planet Earth. Berlin, Heidelberg: Springer: 443−449.
Ruffhead A. 1987. An introduction to least-squares collocation[J]. Survey Rev,29(224):85–94. doi: 10.1179/sre.1987.29.224.85
Sadiq M,Tscherning C C,Ahmad Z. 2010. Regional gravity field model in Pakistan area from the combination of CHAMP,GRACE and ground data using least squares collocation:A case study[J]. Adv Space Res,46(11):1466–1476. doi: 10.1016/j.asr.2010.07.004
Sobh M,Mansi A H,Campbell S,Ebbing J. 2019. Regional gravity field model of egypt based on satellite and terrestrial data[J]. Pure Appl Geophys,176(2):767–786. doi: 10.1007/s00024-018-1982-y
Wu Y Q,Jiang Z S,Yang G H,Wei W X,Liu X X. 2011. Comparison of GPS strain rate computing methods and their reliability[J]. Geophys J Int,185(2):703–717. doi: 10.1111/j.1365-246X.2011.04976.x
Wu Y Q,Jiang Z S,Liu X X,Wei W X,Zhu S,Zhang L,Zou Z Y,Xiong X H,Wang Q X,Du J L. 2017. A comprehensive study of gridding methods for GPS horizontal velocity fields[J]. Pure Appl Geophys,174(3):1201–1217. doi: 10.1007/s00024-016-1456-z
Yildiz H. 2012. A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation[J]. Stud Geophys Geodaet,56(1):171–184. doi: 10.1007/s11200-011-9030-8