Fault geometric effects on characteristics of slow slip events in south-central Alaska
-
摘要: 本文采用三种不同的俯冲带几何模型,在速率-状态依赖型摩擦律和准动态算法的框架下,对阿拉斯加库克湾的慢滑移事件进行了数值模拟,以探究断层几何形状对慢滑移特征的影响。结果表明:几何因素对慢滑移的时空演化有较大影响;慢滑移区域的宽度对数值模拟的结果起着至关重要的作用;断层几何形态更平缓的区域将导致更大、更快的事件。这一结果有助于我们进一步了解慢滑移的成因以及断层几何形态对慢滑移时空演化的影响。
-
关键词:
- 慢滑移 /
- 阿拉斯加中南部俯冲带 /
- 断层几何效应 /
- 速率-状态依赖型摩擦律
Abstract: The purpose of this paper is to explore the influence of the geometry of fault model on the characteristic values of slow slip events in numerical simulations. In this paper, three different subduction zone geometric models were used to numerically simulate slow slip events (SSEs) in Cook Inlet, Alaska in the framework of rate- and state-dependent friction law and a quasi-dynamic algorithm so as to explore the influence of fault geometry on SSEs characteris-tics. The results show that the geometric factor does have great influence on the spatio-temporal evolution of SSEs. The width of the SSEs zone plays a key role in the simulation of SSEs. And the areas with gentler terrain lead to larger and faster events. The results are helpful to further understand the genesis of SSEs and the influence of fault geometry on the evolution of SSEs. -
引言
开展近断层速度脉冲型地震动特性研究对揭示近断层区域工程结构的地震破坏机理以及开展抗震设防具有重要价值。近断层速度脉冲型地震动对工程结构具有特殊的破坏作用,产生速度脉冲的主要原因之一是断层破裂传播的方向性(Somerville et al,1997 ;Somerville,2003;Bray,Rodriguez-Marek,2004;刘启方等,2006)。速度脉冲具有很强的方向性特征,目前相关研究通常关注的是垂直断层走向方向的速度脉冲特性,实际上在与断层走向不垂直的其它部分区域内也已识别出速度脉冲信号(Howard et al,2005 ;Boore,2006;Shahi,Baker,2011,2013,2014;谢俊举等,2011)。另外,开展近断层区域的工程抗震设防也需要详细了解断层附近不同方向上速度脉冲的地震动特性,特别是近断层地震动最强速度脉冲方向分量,可为最不利设计地震动参数的确定提供科学依据,这些都有待深入研究。
迄今为止,有关速度脉冲型地震动特性、脉冲信号识别及其对工程结构影响的研究大多是针对垂直断层走向和平行断层走向或不考虑方向性的情形开展(李新乐,朱晞,2004;韦韬等,2006;Kalkan,Kunnath,2006;谢俊举等,2012;陈波等,2013;赵晓芬,2015)。Howard等(2005)定义含有速度脉冲信号的加速度反应谱峰值的最大值Sa, max所对应方向的分量为最强速度脉冲方向分量,并将其与垂直断层走向的分量的Sa值进行比较,结果表明这两个方向上的地震动特性有较大差异,且与断层类型、断层距紧密相关。鉴于加速度反应谱峰值不能很好地反映速度脉冲的幅值特性(李明等,2009;Zhai et al,2013 ;常志旺,2014; Hayden et al,2014 ;Chang et al,2016 ),以Sa, max定义的最强速度脉冲方向分量有待完善,且用于研究的脉冲数量较少。另外,Shahi和Baker (2011,2013,2014)在开展速度脉冲识别方法研究时发现速度脉冲不仅存在于平行断层走向和垂直断层走向的方向,还可能出现在与断层走向垂直方向附近的一定区域内,并且Shahi和Baker (2014)提出了最强速度脉冲方向的概念,并取对应于最大小波系数的方向为最强速度脉冲方向。最大小波系数反映了时域和频域内累积的脉冲能量最大,比峰值速度、峰值加速度及加速度反应谱峰值等参数能够更好地反映速度脉冲的特征。但Shahi和Baker (2014)未对最强速度脉冲方向分量和垂直断层走向分量的脉冲特性的差异进行比较。此外,Yang和Zhou (2015)研究了1999年台湾集集地震的近断层地震动速度脉冲特性,并基于33条近断层速度脉冲记录利用回归分析方法,给出了这次地震最强速度脉冲方向分量的脉冲幅值随断层距的变化规律。随着速度脉冲记录的不断增多,关于最强速度脉冲方向分量的特性及其与垂直断层走向或平行断层走向的速度脉冲分量之间的特性差异及相关问题,还有待进一步研究。
鉴于此,本文拟采用多分量速度脉冲识别方法,从NGA-West2强震动数据库的236组近断层地震动速度脉冲记录中提取出最强速度脉冲方向分量,计算脉冲幅值PGV、脉冲周期Tp等脉冲参数,借助统计回归方法确定最强速度脉冲方向分量的脉冲参数随震级MW和断层距R变化的统计关系,并比较最强速度脉冲方向分量与垂直或平行断层方向分量之间的特性差异,为考虑地震动速度脉冲对近断层工程结构的影响时速度脉冲记录的选取提供参考。
1. 最强速度脉冲方向分量获取方法
Shahi和Baker (2014)提出基于连续小波变换的多分量地震动速度脉冲识别方法,并从速度记录中提取最强速度脉冲方向分量。其主要思想是将两个正交水平分量(一般取垂直断层走向和平行断层走向分量或南北向和东西向分量)线性组合,并进行连续小波变换,选取与最大小波系数对应方向β分量,而后根据脉冲因子Ip对其进行判别。若β方向对应的分量为速度脉冲(Ip>0),则该方向分量称为最强速度脉冲方向分量。具体计算步骤如下:
1) 将两个正交水平分量f1(t)和f2(t)进行线性组合,
$f\left( {t,\;\theta } \right) {\text{=}} {f_1}\left( t \right) \cos \theta {\text{+}} {f_2}\left( t \right) \sin \theta ;$
(1) 2) 对f (t,θ)进行连续小波变换,
$c\left(s,l,\theta \right) {\text{=}} \frac{1}{{\sqrt s }}{\rm{ }}\int_{ - \infty }^\infty {f(t,\theta )\phi \left(\frac{{t - l}}{s}\right){\rm d}t} ,$
(2) $c(s,l,\theta ) {\text{=}} \frac{1}{{\sqrt s }} \int_{ - \infty }^\infty {[{f_1}(t) \cos\theta {\text{+}} {f_2}(t) \sin \theta]\phi \left(\frac{{t - l}}{s}\right){\rm d}t} {\text{,}}$
(3) $c(s,l,\theta ) {\text{=}} {c_1}(s,l) \cos\theta + {c_2}(s,l) \sin \theta {\text{;}}$
(4) 3) 确定最大小波系数为
$c{}_{\max }(s,l) {\text{=}} \mathop {\max }\limits_\theta c(s,l) {\text{=}} \sqrt {c_1^2(s,l) {\text{+}} c_2^2(s,l)}{\text{;}} $
(5) 4) 确定最大小波系数所对应的方向β为
${c_1}(s,l) {\text{=}} {c_{\max }}(s,l) \cos\beta {\text{,}}$
(6) ${c_2}(s,l) {\text{=}} {c_{\max }}(s,l) \sin \beta {\text{,}}$
(7) $\beta {\text{=}} \arctan {\frac{{{c_2}}}{{{c_1}}}} {\text{;}}$
(8) 5) 将β方向的对应分量记为H,根据脉冲因子Ip的表达式
$I_{\rm p} {\text{=}} - 1 {\text{×}} (13.819 {\text{+}} 9.384 {P^2} {\text{+}} 0.000\;4 {\rm PG{V^2}} - 17.189 P - 0.625 {\rm PGV} {\text{+}} 0.585 P \cdot {\rm PGV})$
(9) 对其进行判别,其中
$P {\text{=}} 0.63{ R_{\rm PGV}} {\text{+}} 0.777{{R}}_{\rm E}{\text{,}}$
(10) ${R}_{\rm PGV} {\text{=}} \frac{{{V_{\rm res}}}}{{\rm PGV}}{\text{,}}{{R}}_{\rm E} {\text{=}} \frac{{V_{{\rm res}}^2}}{{{{\rm PGV}^2}}}.$
(11) 若Ip>0,其为脉冲记录;若Ip<0,其为非脉冲记录;若Ip=0,该方法失效。若该分量为速度脉冲,则将H分量定义为最强速度脉冲方向分量,其相对于正北方向的角度记为φ,如图1所示。
为避免漏判,重复步骤(4)和(5),选取前5个小波系数最大值分别对应方向分量,最终将Ip>0且小波系数最大值对应分量取为最强速度脉冲方向分量。下面以汶川地震中绵竹清平台(51MZQ)的记录为例来说明最强速度脉冲方向分量的确定方法。首先对51MZQ台站记录到的东西向分量和南北向分量线性组合,然后进行连续小波变换,选取与前5个最大小波系数对应方向的分量。由式(9)—(11)可得这5个方向分量均为速度脉冲(Ip>0),其脉冲幅值PGV、脉冲因子Ip、小波系数c、方向β列于表1,其中β=25.39°方向分量所对应的小波系数最大,且Ip>0,故将其取为最强速度脉冲方向分量。图2给出了51MZQ台站记录到的最强速度脉冲方向分量和其它4个方向分量的速度时程。当Ip>0时,取最大的小波系数对应方向分量为最强速度脉冲方向分量。
表 1 前5个最大小波系数对应方向分量的参数Table 1. The parameters of orientation components with top five of the largest wavelet coefficients方向分量 PGV/(cm·s−1) Ip c β/° 最强速度脉冲
方向分量145.89 9.60 1 837.70 25.39 方向分量1 146.71 9.77 1 666.80 36.03 方向分量2 138.63 1.49 1 258.90 9.05 方向分量3 140.00 10.99 1 340.70 17.89 方向分量4 140.69 4.02 954.50 11.91 2. 速度脉冲型强地震动记录及参数
数据来源于Shahi和Baker (2014)从NGA-West2强震动数据库中识别出的244组速度脉冲记录,本研究从中选出236组地震信息完整、数据质量较高的记录进行研究,其中震级MW、断层距R、脉冲幅值PGV、脉冲周期Tp等参数列于附表1,其中Tp由母小波的傅里叶谱最大幅值对应周期所确定(Baker,2007;常志旺等,2013)。本文采用52个地震事件中断层距R<100 km范围内的236组速度脉冲记录,其中,断层距R>60 km的记录有18条,占总数据的7.6%,这些地震的断层破裂长度较长,例如1999年我国台湾集集地震的断层破裂长度为100 km。这236组速度脉冲记录的震级MW为5.0—7.9,断层距R为0.1—92.7 km,场地条件vS30为139.21—2 016.13 m/s,脉冲幅值PGV为23.29—341.77 cm/s,脉冲周期Tp为0.26—13.12 s。将这236组速度脉冲记录分别按震级、断层距分组统计,速度脉冲出现频次如图3所示,可以看出:若按震级分组,震级处于6.0—7.0范围内的速度脉冲记录数量最多(图3a);若按断层距分组,断层距处于0—30 km范围内的速度脉冲记录数量最多(图3b)。
1 236条速度脉冲的相关参数1. Parameters of 236 pulse ground motions序号 地震地点 台站名称 年份 MW R
/kmPGV
/(cm·s−1)Tp
/svS30
/(cm·s−1)断层
类型20 Northern Calif-03 Ferndale City Hall 1954 6.5 27.00 40.29 2.00 219.31 0 51 Wenchuan,China Deyangbaima 2008 7.9 30.50 37.40 6.75 418.21 3 52 Wenchuan,China Mianzuqingping 2008 7.9 6.60 146.94 9.37 551.30 3 77 San Fernando Pacoima Dam (upper left abut) 1971 6.6 1.80 121.73 1.64 2016.13 2 143 Tabas,Iran Tabas 1978 7.3 2.00 129.56 6.19 766.77 2 147 Coyote Lake Gilroy Array #2 1979 5.7 9.00 31.92 1.46 270.84 0 148 Coyote Lake Gilroy Array #3 1979 5.7 7.40 30.75 1.16 349.85 0 149 Coyote Lake Gilroy Array #4 1979 5.7 5.70 32.03 1.35 221.78 0 150 Coyote Lake Gilroy Array #6 1979 5.7 3.10 49.53 1.23 663.31 0 159 Imperial Valley-06 Agrarias 1979 6.5 0.70 53.45 2.34 242.05 0 161 Imperial Valley-06 Brawley Airport 1979 6.5 10.40 36.64 4.40 208.71 0 170 Imperial Valley-06 EC County Center FF 1979 6.5 7.30 70.75 4.42 192.05 0 171 Imperial Valley-06 El Centro-Meloland Geot. Array 1979 6.5 0.10 116.27 3.42 264.57 0 173 Imperial Valley-06 El Centro Array #10 1979 6.5 8.60 55.12 4.52 202.85 0 178 Imperial Valley-06 El Centro Array #3 1979 6.5 12.90 55.78 4.50 162.94 0 179 Imperial Valley-06 El Centro Array #4 1979 6.5 7.00 80.75 4.79 208.91 0 180 Imperial Valley-06 El Centro Array #5 1979 6.5 4.00 96.38 4.13 205.63 0 181 Imperial Valley-06 El Centro Array #6 1979 6.5 1.40 121.50 3.77 203.22 0 182 Imperial Valley-06 El Centro Array #7 1979 6.5 0.60 111.80 4.38 210.51 0 184 Imperial Valley-06 El Centro Differential Array 1979 6.5 5.10 73.45 6.27 202.26 0 185 Imperial Valley-06 Holtville Post Office 1979 6.5 7.50 73.28 4.82 202.89 0 204 Imperial Valley-07 El Centro Array #6 1979 5 10.40 26.02 0.69 203.22 0 250 Mammoth Lakes-06 Long Valley Dam (Upr L Abut) 1980 5.9 16.00 43.22 1.02 483.87 0 285 Irpinia,Italy-01 Bagnoli Irpinio 1980 6.9 8.20 38.08 1.71 594.96 1 292 Irpinia,Italy-01 Sturno (STN) 1980 6.9 10.80 71.02 3.27 382.00 1 316 Westmorland Parachute Test Site 1981 5.9 16.70 60.69 4.39 348.69 0 319 Westmorland Westmorland Fire Sta 1981 5.9 6.50 52.84 1.22 193.67 0 372 Coalinga-02 Anticline Ridge Free-Field 1983 5.1 11.60 26.26 0.26 437.79 2 373 Coalinga-02 Anticline Ridge Pad 1983 5.1 11.60 23.29 0.27 437.79 2 415 Coalinga-05 Transmitter Hill 1983 5.8 9.50 64.34 0.88 434.83 2 418 Coalinga-07 Coalinga-14th & Elm (Old CHP) 1983 5.2 10.90 32.80 0.44 286.77 2 451 Morgan Hill Coyote Lake Dam (SW Abut) 1984 6.2 0.50 76.68 1.07 491.97 0 459 Morgan Hill Gilroy Array #6 1984 6.2 9.90 37.25 1.23 663.31 0 503 Taiwan SMART1 (40),China SMART1 C00 1986 6.3 59.90 34.76 1.57 309.41 2 504 Taiwan SMART1 (40),China SMART1 E01 1986 6.3 57.30 36.86 1.39 308.39 2 505 Taiwan SMART1 (40),China SMART1 I01 1986 6.3 60.10 32.84 1.57 275.82 2 506 Taiwan SMART1 (40),China SMART1 I07 1986 6.3 59.70 33.92 1.67 309.41 2 507 Taiwan SMART1 (40),China SMART1 M01 1986 6.3 60.90 26.05 1.39 268.37 2 508 Taiwan SMART1 (40),China SMART1 M07 1986 6.3 58.90 40.34 1.54 327.61 2 510 Taiwan SMART1 (40),China SMART1 O07 1986 6.3 58.00 28.68 1.53 314.33 2 3. 脉冲幅值与震级和断层距的关系
本文统计分析了速度脉冲幅值随震级和断层距变化的分布图,如图4所示。图中用圆圈分别标出了台湾集集地震TCU052和TCU068台记录到的速度脉冲幅值PGV,分别高达208.85 cm/s和341.77 cm/s。已有研究(Mavroeidis,Papageorgiou,2003)表明,产生如此之大的PGV值可能是由永久位移和前方向效应共同作用所致。为了避免个别数据对回归分析结果的影响太大,本文在统计分析时剔除这两条数据,回归分析得到最强速度脉冲方向分量的脉冲幅值随震级Mw和断层距R变化的统计关系为
$\lg {\rm{PGV}} {\text{=}} 0.105{M_{\rm{W}}}{\text{-}} 0.244{\rm lg}R {\text{+}} 1.289{\text{,}}$
(12) 标准差σlgPGV=0.4。将本文结果与Somerville (1998),Tang和Zhang (2011)给出的结果进行对比,结果如表2和图5所示,可以看出,Somerville (1998)模型的PGV预测值与本文以及Tang和Zhang (2011)的模型预测值相比,相差较大,这可能是由于Somerville (1998)回归分析所用数据较少且其离散性较大。与Tang和Zhang (2011)的对比统计结果显示:随着震级的增大,本文模型的预测值比Tang和Zhang (2011)模型的预测值大,即随着震级的增大,最强速度脉冲方向分量的PGV预测值比垂直于或平行于断层走向分量的PGV预测值大;当R>30 km时,两种模型的预测结果较为接近;当R<30 km时,本文的PGV预测值大于Tang和Zhang (2011)模型给出的PGV预测值,这是由于本文采用了52个地震事件的断层距当R<100 km的236组速度脉冲记录,较以往研究所用数据相对较多。此外,结果的差异主要由近断层地震动具有很强的方向性所引起,不同方向的地震动分量特性差异较大,且随着断层距的减小,方向性越强,差异越大。
表 2 速度脉冲幅值随震级MW和断层距R变化规律的统计模型Table 2. Predictive relationships of variation of velocity pulse amplitude PGV with magnitude MW and fault distance R统计模型 表达式 脉冲分量 Somerville (1998) $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.5{M_{\rm W}} - 0.5\lg R - 1.0$ 垂直或平行于断层走向的分量 Tang和Zhang (2011) $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.07{M_{\rm W}} - 0.19\lg R {\simfont\text{+}} 1.44$ 垂直或平行于断层走向的分量 本文统计模型 $\scriptstyle \lg {\rm PGV} {\simfont\text{=}} 0.105{M_{\rm W}} - 0.244\lg R {\simfont\text{+}} 1.289$ 最强速度脉冲方向分量 4. 脉冲周期与震级的关系
已知震级与脉冲周期的对数值线性相关(Bray,Rodriguez-Marek,2004;Baker,2007;Shahi,Baker,2013;王宇航,2015),本文经回归分析得到最强速度脉冲方向分量的脉冲周期随震级MW变化的统计关系为
$\ln {T_{\rm p}} {\text{=}} 1.123{M_{\rm W}}{\text{-}} 6.548{\text{,}}$
(13) 变化关系如图6中黑色直线所示,可见脉冲周期随震级的增大而增大。
将本文回归得到的Tp随MW变化的统计模型与Bray和Rodriguez-Marek (2004),Baker (2007),Shahi和Baker (2013)给出的统计模型进行对比,结果如表3和图6所示。Bray和Rodriguez-Marek (2004)以及Baker (2007)均采用垂直断层走向或平行断层走向的速度脉冲记录进行回归分析,但两种模型的预测值差异较大,这是由于速度脉冲周期Tp的计算方法及数据样本量的不同所致。本文与Baker (2007)及Shahi和Baker (2013)采用相同的速度脉冲周期计算方法,对比结果显示:当MW≤7.5时,Baker (2007)模型的脉冲周期预测值较本文及Shahi和Baker (2013)模型的预测值大,说明在此震级范围内,最强速度脉冲方向分量的脉冲周期比垂直或平行断层分量的脉冲周期小;随着震级的增大,当MW>7.5时,两种不同方向分量的脉冲周期差异逐渐减小,可以忽略。总之,本文的统计模型与Shahi和Baker(2013)给出的统计模型最为接近,二者之间的差异可以忽略。Shahi和Baker (2013)的模型是基于方向性效应速度脉冲记录拟合所得,本文模型则是采用方向性效应和滑冲效应速度脉冲记录进行的拟合,这说明方向性效应速度脉冲记录和滑冲效应速度脉冲记录在最强速度脉冲方向上的脉冲周期差异较小,可以忽略。
表 3 速度脉冲周期Tp随震级MW变化关系的统计模型Table 3. Predictive relationships of variation of velocity pulse period Tp with magnitude MW统计模型 表达式 脉冲分量 脉冲类型 标准差 Bray和Rodriguez-Marek (2004) $\scriptstyle \ln {T_{\rm p}}{\simfont\text{=}} 1.03{M_{\rm W}} {\simfont\text{-}} 6.37$ 垂直或平行断层分量 不区分脉冲类型 0.38 Baker (2007) $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.02{M_{\rm W}} {\simfont\text{-}} 5.78$ 垂直或平行断层分量 不区分脉冲类型 0.55 Shahi和Baker (2013) $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.075{M_{\rm W}} {\simfont\text{-}}6.207$ 最强速度脉冲方向分量 前方向性效应速度脉冲 0.61 本文统计模型 $\scriptstyle \ln {T_{\rm p}} {\simfont\text{=}} 1.123{M_{\rm W}} {\simfont\text{-}} 6.548$ 最强速度脉冲方向分量 不区分脉冲类型 0.54 5. 脉冲对加速度反应谱的放大作用
从脉冲对加速度反应谱的放大作用角度,本文研究了不同方向脉冲分量对加速度反应谱的放大作用是否相同。为了定量地考察脉冲对加速度反应谱的放大作用,将脉冲记录的加速度反应谱Sa, pulse表示成(Shahi,Baker,2013)
$\ln {S_{\rm a{\text{,}}\!\!\!\!pulse}} {\text{=}} \ln \left( {\frac{{{S_{\rm a{\text{,}}\!\!\!\!pulse}}}}{{{S_{\rm a{\text{,}}\!\!\!\!res}}}} \cdot {S_{\rm a{\text{,}}\!\!\!\!res}}} \right) {\text{=}} {\rm ln}({A_{\rm f}} \cdot {S_{\rm a{\text{,}}\!\!\!\!res}}) {\text{=}} {\rm ln}{A_{\rm f}} {\text{+}} {\rm ln}{S_{\rm a{\text{,}}\!\!\!\!res}}{\text{,}}$
(14) 脉冲对加速度反应谱的放大作用系数Af为
${A_{\rm f}} = \frac{{{S_{\rm a{\text{,}}\!\!\!\!pulse}}}}{{{S_{\rm a{\text{,}}\!\!\!\!res}}}}{\text{,}}$
(15) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 4 不同方向分量的脉冲放大作用最强值及对应周期比的对比Table 4. Comparison of the strongest pulse amplifications Af and corresponding largeset periods T/Tp in different pulse-like orientations方法 max( $\scriptstyle \overline A{{_{\rm f}}} $ )peak(T/Tp) 脉冲方向 Shahi和Baker (2013) 3.28 0.88 最强速度脉冲方向 本文结果 3.44 1.05 垂直断层走向 注:max(Af)表示脉冲对加速度反应谱放大系数曲线的峰值,peak(T/Tp)表示放大作用系数曲线峰值所对应的周期比值。 6. 讨论与结论
本文采用多分量速度脉冲识别方法提取出最强速度脉冲方向分量,计算其脉冲幅值PGV、脉冲周期Tp等脉冲参数,回归分析得到其脉冲参数随震级MW和断层距R变化的统计规律,并通过与平行或垂直断层方向分量的速度脉冲特性的对比,比较了各方向分量的特性差异,主要结果如下:
1) 最强速度脉冲方向分量与垂直或平行断层方向分量的脉冲幅值有差异。 随着震级的增大,最强速度脉冲方向分量的脉冲幅值预测值比垂直或平行断层方向分量的预测值大;当R<30 km时,最强速度脉冲方向分量的脉冲幅值预测值比垂直或平行断层走向的预测值大,而当R>30 km时,两种方向分量的脉冲幅值差异较小,可以忽略。
2) 最强速度脉冲方向分量与垂直或平行断层方向分量的脉冲周期有差异。当MW≤7.5时,最强速度脉冲方向分量的脉冲周期预测值比垂直或平行断层方向分量的预测值大,而当MW>7.5时,两种方向分量的脉冲周期差异较小,可以忽略;方向性效应速度脉冲记录和滑冲效应速度脉冲记录在最强速度脉冲方向上的脉冲周期差异较小,可以忽略。
3) 最强速度脉冲方向分量与垂直或平行断层方向分量的速度脉冲在脉冲周期附近对加速度反应谱的放大作用相似。
综上,当R<30 km且MW≤7.5时,需要考虑最强速度脉冲方向分量与垂直或平行断层方向分量的幅值和周期的差异。此外,本文仅研究了最强速度脉冲方向分量与垂直或平行断层方向分量的特性差异,下一步将研究在速度脉冲不同方向分量作用下结构响应的差异。
美国太平洋地震研究中心提供了强震记录数据,斯坦福大学的Jack W. Baker教授和Shrey Kumar Shahi博士在多分量速度脉冲识别方法上提供了程序,大连理工大学杨迪雄教授对本研究中遇到的问题进行了细心解答,两位匿名审稿人提出了宝贵意见,作者在此一并表示衷心的感谢。
-
图 1 包括两个典型GPS台站(ATW2和AC06)的阿拉斯加中南部地区示意图
红色虚线为Li等(2013)所给出的俯冲带等深线,蓝色虚线为Slab1.0模型的俯冲带等深线(Hayes et al,2012);红色矩形为研究区域;椭圆形为慢滑移区
Figure 1. The map of south-central Alaska including two typical GPS stations (ATW2 and AC06)
The red dashed lines indicate the contours of the plate interface depth from Li et al (2013),and the blue dashed lines indicate the contours of the Slab1.0 model (Hayes et al,2012). The red rectangle is the studied area,and the two black ellipses are two SSEs areas
图 2 三个俯冲带几何模型的研究区域(彩色). 粉色线条为等深线
(a) Slab1.0模型;(b) Li等(2013)模型;(c)二维平板模型
Figure 2. The areas (colored rectangle) of three slab models where solid pink lines denote the depth contours
(a) Slab1.0 model;(b) Li et al (2013) model;(c) Planar model
图 3 基于Slab1.0模型(a),Li等(2013)模型(b)和二维平板模型(c)的慢滑移区域(高孔隙压、速度弱化)内20—80年平均滑动速率的模拟结果
Figure 3. The average velocity over the SSE zone (velocity weakening and high pore pressure) during 20 to 80 years in the simulations based on the Slab1.0 model (a),Li et al (2013) model (b) and planar model (c)
图 4 基于三个模型两台站y方向的地表合成位移(线性趋势已经去除)和速度
(a) AC06台站;(b) ATW2台站;(c) ATW2台站移除了Slab1.0模型的曲线
Figure 4. The synthetic surface deformation and its velocity in y direction with a linear line removed at the two stations based on the three topography models
(a) Station AC06;(b) Station ATW2;(c) Synthetic surface deformation and its velocity at the station ATW2 with the Slab1.0 model removed
表 1 阿拉斯加慢滑移数值模拟的关键参数
网格尺度H/km 成核尺寸h*/km 俯冲速率Vpl/(mm·a−1) 剪切模量G/GPa 剪切波波速cS/(km·s−1) 2 7 55 30 3 泊松比ν 稳定速率V0/(μm·s−1) 稳定摩擦率f0 慢滑移区有效正应力σn/MPa 特征滑移量Dc/mm 0.25 1 0.6 20 19.25 表 2 AC06和ATW2台站的慢滑移地表特征
Table 2 The SSEs surface characteristics for the stations AC06 and ATW2
模型 平均间隔/a 平均持续时间/a 平均合成位移/mm 最大速度/(mm·a−1) AC06 ATW2 AC06 ATW2 AC06 ATW2 AC06 ATW2 Slab1.0模型 6.74 25.51 4.72 0.95 38.69 185.66 17.40 3 506.10 Li模型 10.71 5.98 2.71 0.45 59.30 19.61 42.99 11.88 平板模型 9.59 10.89 8.35 7.29 48.39 50.72 20.78 22.97 -
Abers G A,van Keken P E,Kneller E A,Ferris A,Stachnik J C. 2006. The thermal structure of subduction zones constrained by seismic imaging:Implications for slab dehydration and wedge flow[J]. Earth Planet Sci Lett,241(3/4):387–397. doi: 10.1016/j.jpgl.2005.11.055
Alchalbi A,Daoud M,Gomez F,McClusky S,Reilinger R,Romeyeh M A,Alsouod A,Yassminh R,Ballani B,Darawcheh R,Sbeinati R,Radwan Y,Al Masri R,Bayerly M,Al Ghazzi R,Barazangi M. 2010. Crustal deformation in northwestern Arabia from GPS measurements in Syria:Slow slip rate along the northern Dead Sea fault[J]. Geophys J Int,180(1):125–135. doi: 10.1111/j.1365-246X.2009.04431.x
Andrews D J. 1999. Test of two methods for faulting in finite-difference calculations[J]. Bull Seismol Soc Am,89(4):931–937.
Audet P,Bostock M G,Christensen N I,Peacock S M. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing[J]. Nature,457(7225):76–78. doi: 10.1038/nature07650
Audet P,Bostock M G,Boyarko D C,Brudzinski M R,Allen R M. 2010. Slab morphology in the Cascadia forearc and its relation to episodic tremor and slip[J]. J Geophys Res,115(B4):B00A16. doi: 10.1029/2008JB006053
Audet P,Kim Y. 2016. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs:A review[J]. Tectonophysics,670:1–15. doi: 10.1016/j.tecto.2016.01.005
Beeler N M. 2004. Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation[J]. Pure Appl Geophys,161:1853–1876.
Blanpied M L,Marone C J,Lockner D A,Byerlee J D,King D P. 1998. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. J Geophys Res,103(B5):9691–9712. doi: 10.1029/98JB00162
Brocher T M,Fuis G S,Fisher M A,Plafker G,Moses M J,Taber J J,Christensen N I. 1994. Mapping the megathrust beneath the northern gulf of Alaska using wide-angle seismic data[J]. J Geophys Res,99(B6):11663–11685. doi: 10.1029/94JB00111
Brown K M,Tryon M D,DeShon H R,Dorman L R M,Schwartz S Y. 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth Planet Sci Lett,238(1/2):189–203. doi: 10.1016/j.jpgl.2005.06.055
Brudzinski M,Cabral-Cano E,Correa-Mora F,DeMets C,Márquez-Azúa B. 2007. Slow slip transients along the Oaxaca subduction segment from 1993 to 2007[J]. Geophys J Int,171(2):523–538. doi: 10.1111/j.1365-246X.2007.03542.x
Cohen S C,Freymueller J T. 2004. Crustal deformation in the southcentral Alaska subduction zone[J]. Adv Geophys,47:1–63. doi: 10.1016/S0065-2687(04)47001-0
Colella H V,Dieterich J H,Richards-Dinger K,Rubin A M. 2012. Complex characteristics of slow slip events in subduction zones reproduced in multi-cycle simulations[J]. Geophys Res Lett,39(20):L20312. doi: 10.1029/2012GL053276
Dalguer L A,Day S M. 2006. Comparison of fault representation methods in finite difference simulations of dynamic rupture[J]. Bull Seismol Soc Am,96(5):1764–1778. doi: 10.1785/0120060024
Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res,84(B5):2161–2168. doi: 10.1029/JB084iB05p02161
Doser D I,Veilleux A M. 2009. A comprehensive study of the seismicity of the Kenai Peninsula-Cook Inlet region,south-central Alaska[J]. Bull Seismol Soc Am,99(4):2208–2222. doi: 10.1785/0120080251
Douglas A,Beavan J,Wallace L,Townend J. 2005. Slow slip on the northern Hikurangi subduction interface,New Zealand[J]. Geophys Res Lett,32(16):L16305. doi: 10.1029/2005GL023607
Dragert G,Wang K L,James T S. 2001. A silent slip event on the deeper Cascadia subduction interface[J]. Science,292(5521):1525–1528. doi: 10.1126/science.1060152
Eberhart-Phillips D,Haeussler P J,Freymueller J T,Frankel A D,Rubin C M,Craw P,Ratchkovski N A,Anderson G,Carver G A,Crone A J,Dawson T E,Fletcher H,Hansen R,Harp E L,Harris R A,Hill D P,Hreinsdóttir S,Jibson R W,Jones L M,Kayen R,Keefer D K,Larsen C F,Moran S C,Personius S F,Plafker G,Sherrod B,Sieh K,Sitar N,Wallace W K. 2003. The 2002 Denali fault earthquake,Alaska:A large magnitude,slip-partitioned event[J]. Science,300(5622):1113–1118. doi: 10.1126/science.1082703
Finzel E, Flesch L M, Ridgway K D. 2011. Kinematics and dynamics of the northern North American cordillera: Deformation related to plate convergence, gravitational potential energy, and basal tractions[C/OL]//Proceedings of American Geophysical Union, Fall Meeting 2011. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2011AGUFM.T11B2310F/abstract.
Freymueller J T, Li S, Fu Y, McCaffrey R. 2016. Slow slip in the Alaska subduction zone and the long-term slip budget on the megathrust[C]//Proceedings of AGU Fall Meeting Abstracts. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2016AGUFM.S41C..01F/abstract.
Fu Y N,Freymueller J T. 2013. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth Planet Sci Lett,375:303–311. doi: 10.1016/j.jpgl.2013.05.049
Fu Y N,Liu Z,Freymueller J T. 2015. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochem Geophys Geosyst,16(7):2450–2461. doi: 10.1002/2015GC005904
Fuis G S,Ambos E L,Mooney W D,Christensen N I,Geist E. 1991. Crustal structure of accreted terranes in southern Alaska,Chugach mountains and Copper River basin,from seismic refraction results[J]. J Geophys Res,96(B3):4187–4227. doi: 10.1029/90JB02316
Fukuda M,Sagiya T,Asai Y. 2008. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station[J]. Eos,89(S):U33A-0033.
Gao X,Wang K L. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature,543(7645):416–419. doi: 10.1038/nature21389
Graham S E,DeMets C,Cabral-Cano E,Kostoglodov V,Walpersdorf A,Cotte N,Brudzinski M,McCaffrey R,Salazar-Tlaczani L. 2014. GPS constraints on the 2011−2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake,southern Mexico[J]. Geophys J Int,197(3):1593–1607. doi: 10.1093/gji/ggu019
Hastie L M,Savage J C. 1970. A dislocation model for the 1964 Alaska earthquake[J]. Bull Seismol Soc Am,60(4):1389–1392.
Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res,117(B1):B01302. doi: 10.1029/2011JB008524
He C R,Yao W M,Wang Z L,Zhou Y S. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated tempera-tures[J]. Tectonophysics,427(1/4):217–229. doi: 10.1016/j.tecto.2006.05.023
Herrendörfer R,Gerya T,van Dinther Y. 2018. An invariant rate- and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations[J]. J Geophys Res,123(6):5018–5051. doi: 10.1029/2017JB015225
Hyndman R D. 2013. Downdip landward limit of Cascadia great earthquake rupture[J]. J Geophys Res,118(10):5530–5549. doi: 10.1002/jgrb.50390
Ichinose G,Somerville P,Thio H K,Graves R,O′Connell D. 2007. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. J Geophys Res,112:B07306. doi: 10.1029/2006JB004728
Ito Y,Hino R,Kido M,Fujimoto H,Osada Y,Inazu D,Ohta Y,Iinuma T,Ohzono M,Miura S,Mishina M,Suzuki K,Tsuji T,Ashi J. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake[J]. Tectonophysics,600:14–26. doi: 10.1016/j.tecto.2012.08.022
Kanamori H. 1970. The Alaska earthquake of 1964:Radiation of long-period surface waves and source mechanism[J]. J Geophys Res,75(26):5029–5040. doi: 10.1029/JB075i026p05029
Kao H,Shan S J,Dragert H,Rogers G. 2009. Northern Cascadia episodic tremor and slip:A decade of tremor observations from 1997 to 2007[J]. J Geophys Res,114(B11):B00A12. doi: 10.1029/2008JB006046
Kim Y H,Abers G A,Li J Y,Christensen D,Calkins J,Rondenay S. 2014. Alaska megathrust 2:Imaging the megathrust zone and Yakutat/Pacific Plate interface in the Alaska subduction zone[J]. J Geophys Res,119(3):1924–1941. doi: 10.1002/2013JB010581
Kimura H,Kasahara K,Takeda T. 2009. Subduction process of the Philippine Sea Plate off the Kanto district,central Japan,as revealed by plate structure and repeating earthquakes[J]. Tectonophysics,472(1/4):18–27. doi: 10.1016/j.tecto.2008.05.012
Kodaira S,Iidaka T,Kato A,Park J O,Iwasaki T,Kaneda Y. 2004. High pore fluid pressure may cause silent slip in the Nankai Trough[J]. Science,304(5675):1295–1298. doi: 10.1126/science.1096535
Lapusta N,Rice J R. 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model[J]. J Geophys Res,108(B4):2205. doi: 10.1029/2001JB000793
Lavier L L,Bennett R A,Duddu R. 2013. Creep events at the brittle ductile transition[J]. Geochem Geophys Geosyst,14(9):3334–3351. doi: 10.1002/ggge.20178
Li D,Liu Y J. 2016. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone[J]. J Geophys Res,121(9):6828–6845. doi: 10.1002/2016JB012857
Li D,Liu Y J. 2017. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies[J]. J Geophys Res,122(4):3138–3157. doi: 10.1002/2016JB013778
Li H T,Wei M,Li D,Liu Y J,Kim Y,Zhou S Y. 2018. Segmentation of slow slip events in south central Alaska possibly controlled by a subducted oceanic plateau[J]. J Geophys Res,123(1):418–436. doi: 10.1002/2017JB014911
Li J Y,Geoffrey A,Kim Y,Douglas C. 2013. Alaska megathrust 1:Seismicity 43 years after the great 1964 Alaska megathrust earthquake[J]. J Geophys Res,118(9):4861–4871. doi: 10.1002/jgrb.50358
Li S S,Freymueller J T. 2018. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophys Res Lett,45(8):3453–3460. doi: 10.1002/2017GL076761
Liu Y J. 2013. Numerical simulations on megathrust rupture stabilized under strong dilatancy strengthening in slow slip region[J]. Geophys Res Lett,40(7):1311–1316. doi: 10.1002/grl.50298
Liu Y J. 2014. Source scaling relations and along-strike segmentation of slow slip events in a 3-D subduction fault model[J]. J Geophys Res,119(8):6512–6533. doi: 10.1002/2014JB011144
Liu Y J,Rice J R. 2005. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences[J]. J Geophys Res,110:B08307. doi: 10.1029/2004JB003424
Liu Y J,Rice J R. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model[J]. J Geophys Res,112:B09404. doi: 10.1029/2007JB004930
Liu Y J,Rice J R. 2009. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia[J]. J Geophys Res,114:B09407. doi: 10.1029/2008JB006142
Liu Y J,McGuire J J,Behn M D. 2012. Frictional behavior of oceanic transform faults and its influence on earthquake characteristics[J]. J Geophys Res,117:B04315. doi: 10.1029/2011JB009025
Matsubara M,Obara K,Kasahara K. 2009. High-vP/vS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan[J]. Tectonophysics,472(1/4):6–17. doi: 10.1016/j.tecto.2008.06.013
Matsuzawa T,Hirose H,Shibazaki B,Obara K. 2010. Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes[J]. J Geophys Res,115(B12):B12301. doi: 10.1029/2010JB007566
Matsuzawa T,Shibazaki B,Obara K,Hirose H. 2013. Comprehensive model of short- and long-term slow slip events in the Shikoku region of Japan,incorporating a realistic plate configuration[J]. Geophys Res Lett,40(19):5125–5130. doi: 10.1002/grl.51006
Meade B J. 2007. Algorithms for the calculation of exact displacements,strains,and stresses for triangular dislocation elements in a uniform elastic half space[J]. Comput Geosci,33(8):1064–1075. doi: 10.1016/j.cageo.2006.12.003
Nadeau R M,Dolenc D. 2005. Nonvolcanic tremors deep beneath the San Andreas fault[J]. Science,307(5708):389–392. doi: 10.1126/science.1107142
Nakata R,Ando R,Hori T,Ide S. 2011. Generation mechanism of slow earthquakes:Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity[J]. J Geophys Res,116(B8):B08308. doi: 10.1029/2010JB008188
Nishikawa T,Ide S. 2018. Recurring slow slip events and earthquake nucleation in the source region of the M7 Ibaraki-Oki earthquakes revealed by earthquake swarm and foreshock activity[J]. J Geophys Res,123(9):7950–7968. doi: 10.1029/2018JB015642
Obara K. 2010. Phenomenology of deep slow earthquake family in southwest Japan:Spatiotemporal characteristics and segmentation[J]. J Geophys Res,115(B8):B00A25. doi: 10.1029/2008JB006048
Ohta Y,Freymueller J T,Hreinsdóttir S,Suito H. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth Planet Sci Lett,247(1/2):108–116. doi: 10.1016/j.jpgl.2006.05.013
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040.
Ozacar A A,Zandt G. 2009. Crustal structure and seismic anisotropy near the San Andreas fault at Parkfield,California[J]. Geophys J Int,178(2):1098–1104. doi: 10.1111/j.1365-246X.2009.04198.x
Page R A,Stephens C D,Lahr J C. 1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff zones and the North American Plate along the trans-Alaska crustal transect,Chugach mountains and Copper River basin,southern Alaska[J]. J Geophys Res,94(B11):16059–16082. doi: 10.1029/JB094iB11p16059
Peng Z G,Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena[J]. Nat Geosci,3(9):599–607. doi: 10.1038/ngeo940
Pulpan H,Frohlich C. 1985. Geometry of the subducted plate near Kodiak Island and lower Cook Inlet,Alaska,determined from relocated earthquake hypocenters[J]. Bull Seismol Soc Am,75(3):791–810.
Ratchkovski N A,Hansen R A. 2002. New evidence for segmentation of the Alaska subduction zone[J]. Bull Seismol Soc Am,92(5):1754–1765. doi: 10.1785/0120000269
Rice J R. 1993. Spatio-temporal complexity of slip on a fault[J]. J Geophys Res,98(B6):9885–9907. doi: 10.1029/93JB00191
Rogers G,Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone:The chatter of silent slip[J]. Science,300(5627):1942–1943. doi: 10.1126/science.1084783
Rubin A M,Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. J Geophys Res,110(B11):B11312. doi: 10.1029/2005JB003686
Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
Schwartz S Y,Rokosky J M. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones[J]. Rev Geophys,45(3):RG3004. doi: 10.1029/2006RG000208
Shelly D R,Beroza G C,Ide S,Nakamula S. 2006. Low-frequency earthquakes in Shikoku,Japan,and their relationship to episodic tremor and slip[J]. Nature,442(7099):188–191. doi: 10.1038/nature04931
Sherburne R W, Algermissen S T, Harding S T. 1969. The hypocenter, origin time, and magnitude of the Prince William Sound earthquake of March 28, 1964[G]//The Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks. Washington D C: Dep. of Comm. Environ. Sci. Serv. Admin: 49−69. Song T R A,Helmberger D V,Brudzinski M R,Clayton R W,Davis P,Pérez-Campos X,Singh S K. 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico[J]. Science,324(5926):502–506. doi: 10.1126/science.1167595
Stephens C D,Fogleman K A,Lahr J C,Page R A. 1984. Wrangell Benioff zone,southern Alaska[J]. Geology,12(6):373–376. doi: 10.1130/0091-7613(1984)12<373:WBZSA>2.0.CO;2
Stuart W D,Hildenbrand T G,Simpson R W. 1997. Stressing of the New Madrid seismic zone by a lower crust detachment fault[J]. J Geophys Res,102(B12):27623–27633. doi: 10.1029/97jb02716
Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res,114(B11):B11404.
Tong X Y,Lavier L L. 2018. Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation[J]. Nat Commun,9(1):3893. doi: 10.1038/s41467-018-06390-z
van Wormer J D,Davies J,Gedney L. 1974. Seismicity and plate tectonics in south central Alaska[J]. Bull Seismol Soc Am,64(5):1467–1475.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Wang K L,He J H,Dragert H,James T S. 2001. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone[J]. Earth Planets Space,53(4):295–306. doi: 10.1186/BF03352386
Wang K L,He J H. 2008. Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation[J]. Bull Seismol Soc Am,98(2):571–579. doi: 10.1785/0120070097
Wei M,McGuire J J,Richardson E. 2012. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophys Res Lett,39(15):L15309. doi: 10.1029/2012GL052351
Wei M,Kaneko Y,Liu Y J,McGuire J J. 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity[J]. Nat Geosci,6(7):566–570. doi: 10.1038/ngeo1835
Yan H,Bürgmann R,Freymueller J T,Banerjee P,Wang K L. 2014. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake[J]. Earth Planets Space,66(1):106. doi: 10.1186/1880-5981-66-106
Yang H F,Liu Y J,Lin J. 2013. Geometrical effects of a subducted seamount on stopping megathrust ruptures[J]. Geophys Res Lett,40(10):2011–2016. doi: 10.1002/grl.50509
Yin A,Xie Z M,Meng L S. 2018. A viscoplastic shear-zone model for deep (15−50 km) slow-slip events at plate convergent margins[J]. Earth Planet Sci Lett,491:81–94. doi: 10.1016/j.jpgl.2018.02.042
-
期刊类型引用(10)
1. 韩建平,柴文阳,石岩,刘云帅. 近断层脉冲型地震动作用下简支梁桥地震响应与损伤分析. 地震工程学报. 2025(02): 251-262+280 . 百度学术
2. 林燕枝,陈宗燕,邹赐,付青,许莉. 形状记忆合金-铅芯橡胶支座对简支梁桥抗震韧性的影响. 福州大学学报(自然科学版). 2025(02): 201-209 . 百度学术
3. 石岩,张智超,秦洪果,裴银海. 近断层脉冲地震动下桥梁排架墩基于保险丝的损伤控制研究. 应用基础与工程科学学报. 2024(01): 223-237 . 百度学术
4. 张尚荣,何佳蔓,唐响,熊洋. 近断层地震动加速度峰值比和脉冲特征的统计分析. 地震学报. 2024(06): 1051-1062 . 本站查看
5. 张钦,刘子心,刘章军. 考虑脉冲参数随机性的近断层地震动降维建模. 震灾防御技术. 2023(03): 471-482 . 百度学术
6. 王东升,陈笑宇,张锐,国巍. 基于希尔伯特-黄变换的近断层地震动脉冲特性研究. 地震学报. 2022(05): 824-844 . 本站查看
7. 赵晓芬,温增平. 近断层速度脉冲型地震动相关问题研究. 地震学报. 2022(05): 765-782 . 本站查看
8. 李华聪,钟菊芳. 最强脉冲方向分量的周期特性及其影响因素分析. 地震研究. 2021(01): 96-104 . 百度学术
9. 李华聪,钟菊芳. 垂直和平行于断层方向的脉冲参数特性分析. 地震工程学报. 2021(02): 331-344 . 百度学术
10. 陈笑宇,王东升,付建宇,国巍. 近断层地震动脉冲特性研究综述. 工程力学. 2021(08): 1-14+54 . 百度学术
其他类型引用(11)