断层几何形态对阿拉斯加中南部俯冲带慢滑移特征的影响

李昊天, 周仕勇

李昊天, 周仕勇. 2019: 断层几何形态对阿拉斯加中南部俯冲带慢滑移特征的影响. 地震学报, 41(6): 681-694. DOI: 10.11939/jass.20190102
引用本文: 李昊天, 周仕勇. 2019: 断层几何形态对阿拉斯加中南部俯冲带慢滑移特征的影响. 地震学报, 41(6): 681-694. DOI: 10.11939/jass.20190102
Li Haotian, Zhou Shiyong. 2019: Fault geometric effects on characteristics of slow slip events in south-central Alaska. Acta Seismologica Sinica, 41(6): 681-694. DOI: 10.11939/jass.20190102
Citation: Li Haotian, Zhou Shiyong. 2019: Fault geometric effects on characteristics of slow slip events in south-central Alaska. Acta Seismologica Sinica, 41(6): 681-694. DOI: 10.11939/jass.20190102

断层几何形态对阿拉斯加中南部俯冲带慢滑移特征的影响

基金项目: 中国地震实验场(2016 368 CESE 0104)和国家自然科学基金(41674047)联合资助
详细信息
    通讯作者:

    周仕勇: e-mail:zsy@pku.edu.cn

  • 中图分类号: P315.1

Fault geometric effects on characteristics of slow slip events in south-central Alaska

  • 摘要: 本文采用三种不同的俯冲带几何模型,在速率-状态依赖型摩擦律和准动态算法的框架下,对阿拉斯加库克湾的慢滑移事件进行了数值模拟,以探究断层几何形状对慢滑移特征的影响。结果表明:几何因素对慢滑移的时空演化有较大影响;慢滑移区域的宽度对数值模拟的结果起着至关重要的作用;断层几何形态更平缓的区域将导致更大、更快的事件。这一结果有助于我们进一步了解慢滑移的成因以及断层几何形态对慢滑移时空演化的影响。
    Abstract: The purpose of this paper is to explore the influence of the geometry of fault model on the characteristic values of slow slip events in numerical simulations. In this paper, three different subduction zone geometric models were used to numerically simulate slow slip events (SSEs) in Cook Inlet, Alaska in the framework of rate- and state-dependent friction law and a quasi-dynamic algorithm so as to explore the influence of fault geometry on SSEs characteris-tics. The results show that the geometric factor does have great influence on the spatio-temporal evolution of SSEs. The width of the SSEs zone plays a key role in the simulation of SSEs. And the areas with gentler terrain lead to larger and faster events. The results are helpful to further understand the genesis of SSEs and the influence of fault geometry on the evolution of SSEs.
  • 图  1   包括两个典型GPS台站(ATW2和AC06)的阿拉斯加中南部地区示意图

    红色虚线为Li等(2013)所给出的俯冲带等深线,蓝色虚线为Slab1.0模型的俯冲带等深线(Hayes et al,2012);红色矩形为研究区域;椭圆形为慢滑移区

    Figure  1.   The map of south-central Alaska including two typical GPS stations (ATW2 and AC06)

    The red dashed lines indicate the contours of the plate interface depth from Li et al (2013),and the blue dashed lines indicate the contours of the Slab1.0 model (Hayes et al,2012). The red rectangle is the studied area,and the two black ellipses are two SSEs areas

    图  2   三个俯冲带几何模型的研究区域(彩色). 粉色线条为等深线

    (a) Slab1.0模型;(b) Li等(2013)模型;(c)二维平板模型

    Figure  2.   The areas (colored rectangle) of three slab models where solid pink lines denote the depth contours

    (a) Slab1.0 model;(b) Li et al (2013) model;(c) Planar model

    图  3   基于Slab1.0模型(a),Li等(2013)模型(b)和二维平板模型(c)的慢滑移区域(高孔隙压、速度弱化)内20—80年平均滑动速率的模拟结果

    Figure  3.   The average velocity over the SSE zone (velocity weakening and high pore pressure) during 20 to 80 years in the simulations based on the Slab1.0 model (a),Li et al (2013) model (b) and planar model (c)

    图  4   基于三个模型两台站y方向的地表合成位移(线性趋势已经去除)和速度

    (a) AC06台站;(b) ATW2台站;(c) ATW2台站移除了Slab1.0模型的曲线

    Figure  4.   The synthetic surface deformation and its velocity in y direction with a linear line removed at the two stations based on the three topography models

    (a) Station AC06;(b) Station ATW2;(c) Synthetic surface deformation and its velocity at the station ATW2 with the Slab1.0 model removed

    表  1   阿拉斯加慢滑移数值模拟的关键参数

    网格尺度H/km成核尺寸h*/km俯冲速率Vpl/(mm·a−1剪切模量G/GPa剪切波波速cS/(km·s−1
    2755303
    泊松比ν稳定速率V0/(μm·s−1稳定摩擦率f0慢滑移区有效正应力σn/MPa特征滑移量Dc/mm
    0.2510.62019.25
    下载: 导出CSV

    表  2   AC06和ATW2台站的慢滑移地表特征

    Table  2   The SSEs surface characteristics for the stations AC06 and ATW2

    模型平均间隔/a平均持续时间/a平均合成位移/mm最大速度/(mm·a−1
    AC06ATW2AC06ATW2AC06ATW2AC06ATW2
    Slab1.0模型6.7425.514.720.9538.69185.6617.403 506.10
    Li模型10.71 5.982.710.4559.30 19.6142.99 11.88
    平板模型9.5910.898.357.2948.39 50.7220.78 22.97
    下载: 导出CSV
  • Abers G A,van Keken P E,Kneller E A,Ferris A,Stachnik J C. 2006. The thermal structure of subduction zones constrained by seismic imaging:Implications for slab dehydration and wedge flow[J]. Earth Planet Sci Lett,241(3/4):387–397. doi: 10.1016/j.jpgl.2005.11.055

    Alchalbi A,Daoud M,Gomez F,McClusky S,Reilinger R,Romeyeh M A,Alsouod A,Yassminh R,Ballani B,Darawcheh R,Sbeinati R,Radwan Y,Al Masri R,Bayerly M,Al Ghazzi R,Barazangi M. 2010. Crustal deformation in northwestern Arabia from GPS measurements in Syria:Slow slip rate along the northern Dead Sea fault[J]. Geophys J Int,180(1):125–135. doi: 10.1111/j.1365-246X.2009.04431.x

    Andrews D J. 1999. Test of two methods for faulting in finite-difference calculations[J]. Bull Seismol Soc Am,89(4):931–937.

    Audet P,Bostock M G,Christensen N I,Peacock S M. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing[J]. Nature,457(7225):76–78. doi: 10.1038/nature07650

    Audet P,Bostock M G,Boyarko D C,Brudzinski M R,Allen R M. 2010. Slab morphology in the Cascadia forearc and its relation to episodic tremor and slip[J]. J Geophys Res,115(B4):B00A16. doi: 10.1029/2008JB006053

    Audet P,Kim Y. 2016. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs:A review[J]. Tectonophysics,670:1–15. doi: 10.1016/j.tecto.2016.01.005

    Beeler N M. 2004. Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation[J]. Pure Appl Geophys,161:1853–1876.

    Blanpied M L,Marone C J,Lockner D A,Byerlee J D,King D P. 1998. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. J Geophys Res,103(B5):9691–9712. doi: 10.1029/98JB00162

    Brocher T M,Fuis G S,Fisher M A,Plafker G,Moses M J,Taber J J,Christensen N I. 1994. Mapping the megathrust beneath the northern gulf of Alaska using wide-angle seismic data[J]. J Geophys Res,99(B6):11663–11685. doi: 10.1029/94JB00111

    Brown K M,Tryon M D,DeShon H R,Dorman L R M,Schwartz S Y. 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth Planet Sci Lett,238(1/2):189–203. doi: 10.1016/j.jpgl.2005.06.055

    Brudzinski M,Cabral-Cano E,Correa-Mora F,DeMets C,Márquez-Azúa B. 2007. Slow slip transients along the Oaxaca subduction segment from 1993 to 2007[J]. Geophys J Int,171(2):523–538. doi: 10.1111/j.1365-246X.2007.03542.x

    Cohen S C,Freymueller J T. 2004. Crustal deformation in the southcentral Alaska subduction zone[J]. Adv Geophys,47:1–63. doi: 10.1016/S0065-2687(04)47001-0

    Colella H V,Dieterich J H,Richards-Dinger K,Rubin A M. 2012. Complex characteristics of slow slip events in subduction zones reproduced in multi-cycle simulations[J]. Geophys Res Lett,39(20):L20312. doi: 10.1029/2012GL053276

    Dalguer L A,Day S M. 2006. Comparison of fault representation methods in finite difference simulations of dynamic rupture[J]. Bull Seismol Soc Am,96(5):1764–1778. doi: 10.1785/0120060024

    Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res,84(B5):2161–2168. doi: 10.1029/JB084iB05p02161

    Doser D I,Veilleux A M. 2009. A comprehensive study of the seismicity of the Kenai Peninsula-Cook Inlet region,south-central Alaska[J]. Bull Seismol Soc Am,99(4):2208–2222. doi: 10.1785/0120080251

    Douglas A,Beavan J,Wallace L,Townend J. 2005. Slow slip on the northern Hikurangi subduction interface,New Zealand[J]. Geophys Res Lett,32(16):L16305. doi: 10.1029/2005GL023607

    Dragert G,Wang K L,James T S. 2001. A silent slip event on the deeper Cascadia subduction interface[J]. Science,292(5521):1525–1528. doi: 10.1126/science.1060152

    Eberhart-Phillips D,Haeussler P J,Freymueller J T,Frankel A D,Rubin C M,Craw P,Ratchkovski N A,Anderson G,Carver G A,Crone A J,Dawson T E,Fletcher H,Hansen R,Harp E L,Harris R A,Hill D P,Hreinsdóttir S,Jibson R W,Jones L M,Kayen R,Keefer D K,Larsen C F,Moran S C,Personius S F,Plafker G,Sherrod B,Sieh K,Sitar N,Wallace W K. 2003. The 2002 Denali fault earthquake,Alaska:A large magnitude,slip-partitioned event[J]. Science,300(5622):1113–1118. doi: 10.1126/science.1082703

    Finzel E, Flesch L M, Ridgway K D. 2011. Kinematics and dynamics of the northern North American cordillera: Deformation related to plate convergence, gravitational potential energy, and basal tractions[C/OL]//Proceedings of American Geophysical Union, Fall Meeting 2011. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2011AGUFM.T11B2310F/abstract.

    Freymueller J T, Li S, Fu Y, McCaffrey R. 2016. Slow slip in the Alaska subduction zone and the long-term slip budget on the megathrust[C]//Proceedings of AGU Fall Meeting Abstracts. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2016AGUFM.S41C..01F/abstract.

    Fu Y N,Freymueller J T. 2013. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth Planet Sci Lett,375:303–311. doi: 10.1016/j.jpgl.2013.05.049

    Fu Y N,Liu Z,Freymueller J T. 2015. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochem Geophys Geosyst,16(7):2450–2461. doi: 10.1002/2015GC005904

    Fuis G S,Ambos E L,Mooney W D,Christensen N I,Geist E. 1991. Crustal structure of accreted terranes in southern Alaska,Chugach mountains and Copper River basin,from seismic refraction results[J]. J Geophys Res,96(B3):4187–4227. doi: 10.1029/90JB02316

    Fukuda M,Sagiya T,Asai Y. 2008. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station[J]. Eos,89(S):U33A-0033.

    Gao X,Wang K L. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature,543(7645):416–419. doi: 10.1038/nature21389

    Graham S E,DeMets C,Cabral-Cano E,Kostoglodov V,Walpersdorf A,Cotte N,Brudzinski M,McCaffrey R,Salazar-Tlaczani L. 2014. GPS constraints on the 2011−2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake,southern Mexico[J]. Geophys J Int,197(3):1593–1607. doi: 10.1093/gji/ggu019

    Hastie L M,Savage J C. 1970. A dislocation model for the 1964 Alaska earthquake[J]. Bull Seismol Soc Am,60(4):1389–1392.

    Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res,117(B1):B01302. doi: 10.1029/2011JB008524

    He C R,Yao W M,Wang Z L,Zhou Y S. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated tempera-tures[J]. Tectonophysics,427(1/4):217–229. doi: 10.1016/j.tecto.2006.05.023

    Herrendörfer R,Gerya T,van Dinther Y. 2018. An invariant rate- and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations[J]. J Geophys Res,123(6):5018–5051. doi: 10.1029/2017JB015225

    Hyndman R D. 2013. Downdip landward limit of Cascadia great earthquake rupture[J]. J Geophys Res,118(10):5530–5549. doi: 10.1002/jgrb.50390

    Ichinose G,Somerville P,Thio H K,Graves R,O′Connell D. 2007. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. J Geophys Res,112:B07306. doi: 10.1029/2006JB004728

    Ito Y,Hino R,Kido M,Fujimoto H,Osada Y,Inazu D,Ohta Y,Iinuma T,Ohzono M,Miura S,Mishina M,Suzuki K,Tsuji T,Ashi J. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake[J]. Tectonophysics,600:14–26. doi: 10.1016/j.tecto.2012.08.022

    Kanamori H. 1970. The Alaska earthquake of 1964:Radiation of long-period surface waves and source mechanism[J]. J Geophys Res,75(26):5029–5040. doi: 10.1029/JB075i026p05029

    Kao H,Shan S J,Dragert H,Rogers G. 2009. Northern Cascadia episodic tremor and slip:A decade of tremor observations from 1997 to 2007[J]. J Geophys Res,114(B11):B00A12. doi: 10.1029/2008JB006046

    Kim Y H,Abers G A,Li J Y,Christensen D,Calkins J,Rondenay S. 2014. Alaska megathrust 2:Imaging the megathrust zone and Yakutat/Pacific Plate interface in the Alaska subduction zone[J]. J Geophys Res,119(3):1924–1941. doi: 10.1002/2013JB010581

    Kimura H,Kasahara K,Takeda T. 2009. Subduction process of the Philippine Sea Plate off the Kanto district,central Japan,as revealed by plate structure and repeating earthquakes[J]. Tectonophysics,472(1/4):18–27. doi: 10.1016/j.tecto.2008.05.012

    Kodaira S,Iidaka T,Kato A,Park J O,Iwasaki T,Kaneda Y. 2004. High pore fluid pressure may cause silent slip in the Nankai Trough[J]. Science,304(5675):1295–1298. doi: 10.1126/science.1096535

    Lapusta N,Rice J R. 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model[J]. J Geophys Res,108(B4):2205. doi: 10.1029/2001JB000793

    Lavier L L,Bennett R A,Duddu R. 2013. Creep events at the brittle ductile transition[J]. Geochem Geophys Geosyst,14(9):3334–3351. doi: 10.1002/ggge.20178

    Li D,Liu Y J. 2016. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone[J]. J Geophys Res,121(9):6828–6845. doi: 10.1002/2016JB012857

    Li D,Liu Y J. 2017. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies[J]. J Geophys Res,122(4):3138–3157. doi: 10.1002/2016JB013778

    Li H T,Wei M,Li D,Liu Y J,Kim Y,Zhou S Y. 2018. Segmentation of slow slip events in south central Alaska possibly controlled by a subducted oceanic plateau[J]. J Geophys Res,123(1):418–436. doi: 10.1002/2017JB014911

    Li J Y,Geoffrey A,Kim Y,Douglas C. 2013. Alaska megathrust 1:Seismicity 43 years after the great 1964 Alaska megathrust earthquake[J]. J Geophys Res,118(9):4861–4871. doi: 10.1002/jgrb.50358

    Li S S,Freymueller J T. 2018. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophys Res Lett,45(8):3453–3460. doi: 10.1002/2017GL076761

    Liu Y J. 2013. Numerical simulations on megathrust rupture stabilized under strong dilatancy strengthening in slow slip region[J]. Geophys Res Lett,40(7):1311–1316. doi: 10.1002/grl.50298

    Liu Y J. 2014. Source scaling relations and along-strike segmentation of slow slip events in a 3-D subduction fault model[J]. J Geophys Res,119(8):6512–6533. doi: 10.1002/2014JB011144

    Liu Y J,Rice J R. 2005. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences[J]. J Geophys Res,110:B08307. doi: 10.1029/2004JB003424

    Liu Y J,Rice J R. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model[J]. J Geophys Res,112:B09404. doi: 10.1029/2007JB004930

    Liu Y J,Rice J R. 2009. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia[J]. J Geophys Res,114:B09407. doi: 10.1029/2008JB006142

    Liu Y J,McGuire J J,Behn M D. 2012. Frictional behavior of oceanic transform faults and its influence on earthquake characteristics[J]. J Geophys Res,117:B04315. doi: 10.1029/2011JB009025

    Matsubara M,Obara K,Kasahara K. 2009. High-vP/vS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan[J]. Tectonophysics,472(1/4):6–17. doi: 10.1016/j.tecto.2008.06.013

    Matsuzawa T,Hirose H,Shibazaki B,Obara K. 2010. Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes[J]. J Geophys Res,115(B12):B12301. doi: 10.1029/2010JB007566

    Matsuzawa T,Shibazaki B,Obara K,Hirose H. 2013. Comprehensive model of short- and long-term slow slip events in the Shikoku region of Japan,incorporating a realistic plate configuration[J]. Geophys Res Lett,40(19):5125–5130. doi: 10.1002/grl.51006

    Meade B J. 2007. Algorithms for the calculation of exact displacements,strains,and stresses for triangular dislocation elements in a uniform elastic half space[J]. Comput Geosci,33(8):1064–1075. doi: 10.1016/j.cageo.2006.12.003

    Nadeau R M,Dolenc D. 2005. Nonvolcanic tremors deep beneath the San Andreas fault[J]. Science,307(5708):389–392. doi: 10.1126/science.1107142

    Nakata R,Ando R,Hori T,Ide S. 2011. Generation mechanism of slow earthquakes:Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity[J]. J Geophys Res,116(B8):B08308. doi: 10.1029/2010JB008188

    Nishikawa T,Ide S. 2018. Recurring slow slip events and earthquake nucleation in the source region of the M7 Ibaraki-Oki earthquakes revealed by earthquake swarm and foreshock activity[J]. J Geophys Res,123(9):7950–7968. doi: 10.1029/2018JB015642

    Obara K. 2010. Phenomenology of deep slow earthquake family in southwest Japan:Spatiotemporal characteristics and segmentation[J]. J Geophys Res,115(B8):B00A25. doi: 10.1029/2008JB006048

    Ohta Y,Freymueller J T,Hreinsdóttir S,Suito H. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth Planet Sci Lett,247(1/2):108–116. doi: 10.1016/j.jpgl.2006.05.013

    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040.

    Ozacar A A,Zandt G. 2009. Crustal structure and seismic anisotropy near the San Andreas fault at Parkfield,California[J]. Geophys J Int,178(2):1098–1104. doi: 10.1111/j.1365-246X.2009.04198.x

    Page R A,Stephens C D,Lahr J C. 1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff zones and the North American Plate along the trans-Alaska crustal transect,Chugach mountains and Copper River basin,southern Alaska[J]. J Geophys Res,94(B11):16059–16082. doi: 10.1029/JB094iB11p16059

    Peng Z G,Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena[J]. Nat Geosci,3(9):599–607. doi: 10.1038/ngeo940

    Pulpan H,Frohlich C. 1985. Geometry of the subducted plate near Kodiak Island and lower Cook Inlet,Alaska,determined from relocated earthquake hypocenters[J]. Bull Seismol Soc Am,75(3):791–810.

    Ratchkovski N A,Hansen R A. 2002. New evidence for segmentation of the Alaska subduction zone[J]. Bull Seismol Soc Am,92(5):1754–1765. doi: 10.1785/0120000269

    Rice J R. 1993. Spatio-temporal complexity of slip on a fault[J]. J Geophys Res,98(B6):9885–9907. doi: 10.1029/93JB00191

    Rogers G,Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone:The chatter of silent slip[J]. Science,300(5627):1942–1943. doi: 10.1126/science.1084783

    Rubin A M,Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. J Geophys Res,110(B11):B11312. doi: 10.1029/2005JB003686

    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359

    Schwartz S Y,Rokosky J M. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones[J]. Rev Geophys,45(3):RG3004. doi: 10.1029/2006RG000208

    Shelly D R,Beroza G C,Ide S,Nakamula S. 2006. Low-frequency earthquakes in Shikoku,Japan,and their relationship to episodic tremor and slip[J]. Nature,442(7099):188–191. doi: 10.1038/nature04931

    Sherburne R W, Algermissen S T, Harding S T. 1969. The hypocenter, origin time, and magnitude of the Prince William Sound earthquake of March 28, 1964[G]//The Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks. Washington D C: Dep. of Comm. Environ. Sci. Serv. Admin: 49−69.

    Song T R A,Helmberger D V,Brudzinski M R,Clayton R W,Davis P,Pérez-Campos X,Singh S K. 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico[J]. Science,324(5926):502–506. doi: 10.1126/science.1167595

    Stephens C D,Fogleman K A,Lahr J C,Page R A. 1984. Wrangell Benioff zone,southern Alaska[J]. Geology,12(6):373–376. doi: 10.1130/0091-7613(1984)12<373:WBZSA>2.0.CO;2

    Stuart W D,Hildenbrand T G,Simpson R W. 1997. Stressing of the New Madrid seismic zone by a lower crust detachment fault[J]. J Geophys Res,102(B12):27623–27633. doi: 10.1029/97jb02716

    Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res,114(B11):B11404.

    Tong X Y,Lavier L L. 2018. Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation[J]. Nat Commun,9(1):3893. doi: 10.1038/s41467-018-06390-z

    van Wormer J D,Davies J,Gedney L. 1974. Seismicity and plate tectonics in south central Alaska[J]. Bull Seismol Soc Am,64(5):1467–1475.

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Wang K L,He J H,Dragert H,James T S. 2001. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone[J]. Earth Planets Space,53(4):295–306. doi: 10.1186/BF03352386

    Wang K L,He J H. 2008. Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation[J]. Bull Seismol Soc Am,98(2):571–579. doi: 10.1785/0120070097

    Wei M,McGuire J J,Richardson E. 2012. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophys Res Lett,39(15):L15309. doi: 10.1029/2012GL052351

    Wei M,Kaneko Y,Liu Y J,McGuire J J. 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity[J]. Nat Geosci,6(7):566–570. doi: 10.1038/ngeo1835

    Yan H,Bürgmann R,Freymueller J T,Banerjee P,Wang K L. 2014. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake[J]. Earth Planets Space,66(1):106. doi: 10.1186/1880-5981-66-106

    Yang H F,Liu Y J,Lin J. 2013. Geometrical effects of a subducted seamount on stopping megathrust ruptures[J]. Geophys Res Lett,40(10):2011–2016. doi: 10.1002/grl.50509

    Yin A,Xie Z M,Meng L S. 2018. A viscoplastic shear-zone model for deep (15−50 km) slow-slip events at plate convergent margins[J]. Earth Planet Sci Lett,491:81–94. doi: 10.1016/j.jpgl.2018.02.042

  • 期刊类型引用(9)

    1. 孙路强,张明东,康健,刘建波. 低成本地磁场监测设备的设计与实现. 地震工程学报. 2024(03): 665-671 . 百度学术
    2. 孙路强,白仙富,康健,曾宁,朱宏,张明东. 适于野外高密度部署的低成本地磁场监测设备的设计与实现(英文). Applied Geophysics. 2024(03): 505-512+618 . 百度学术
    3. ZHANG Bing,ZHU Xiaoyi,WANG Xiaolei,XING Lili,XUE Bing,LI Jiang,GAO Shanghua,SU Peng,WANG Yuru,WANG Chuhan. Research on High Precision Borehole Temperature Measurement Technology. Acta Geologica Sinica(English Edition). 2024(S1): 81-83 . 必应学术
    4. ZHANG Bing,ZHU Xiaoyi,WU Qiong,XUE Bing,XING Lili,WU Yanxiong,SU Peng,WANG Xiaolei,WANG Yuru,WANG Chuhan. Measurement and Analysis of Vibration Effect of Free-falling Corner Cube Driving Mechanism in Free Fall Absolute Gravimeter. Acta Geologica Sinica(English Edition). 2024(S1): 84-86 . 必应学术
    5. 张旸,吴琼,滕云田,黄家亮. 激光干涉绝对重力仪数据采集与处理的时间优化方法. 仪器仪表学报. 2021(08): 130-136 . 百度学术
    6. 吴琼,滕云田,张兵,黄大伦. 绝对重力仪研制中仪器测量高度的计算. 武汉大学学报(信息科学版). 2017(12): 1773-1778 . 百度学术
    7. 吴琼,滕云田,张兵,郭有光. 基于激光干涉法的地表重力垂直梯度测量系统设计及试验. 地震学报. 2016(05): 794-802 . 本站查看
    8. 王劲松,吴琼,徐行,滕云田,廖开训,王建格. 新型绝对重力仪在海洋重力基点测量中的应用. 海洋测绘. 2016(05): 43-46 . 百度学术
    9. 杨厚丽,郭唐永,邹彤. 绝对重力仪中3种数据处理方法比较. 内陆地震. 2016(02): 144-148 . 百度学术

    其他类型引用(12)

图(5)  /  表(2)
计量
  • 文章访问数:  1994
  • HTML全文浏览量:  682
  • PDF下载量:  78
  • 被引次数: 21
出版历程
  • 收稿日期:  2019-06-09
  • 修回日期:  2019-06-17
  • 网络出版日期:  2019-12-28
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回