Rayleigh wave azimuthal anisotropy in western Sichuan region
-
摘要: 本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW−SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW−SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW−SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。Abstract: Based on the observation data of dense seismic array in western Sichuan, we obtain Rayleigh wave phase velocity and azimuthal anisotropy distribution images at 14−60 s period by eikonal surface wave tomography method. The results show that the low velocity of the northwestern block of the Sichuan-Yunnan diamond block is obvious and anisotropic fast wave direction of the lower crust is dominated by NS. The low velocity anomaly inside the Songpan-Garze block is slightly weaker and the anisotropic fast wave direction of the lower crust is dominated by NW-SE, indicating that there may be lower crust channel flow in the northwestern Sichuan-Yunnan diamond block and there is a relatively weak channel flow inside the Songpan-Garze block. The velocity structure and azimuthal anisotropy are significantly different on both sides of the Longmenshan fault zone and the Lijiang-Xiaojinhe fault zone. We speculate that the crustal flow inside the Tibetan Plateau is blocked by two high-velocity and high-intensity blocks in the Sichuan basin and the Central Yunnan block in the east and south, and lateral flows occur along the boundary zone. The azimuthal anisotropy of the surface wave over the period 25 s by NW-SE is similar to that of SKS splitting. It is concluded that the shear wave anisotropy in Sichuan basin may be mainly from the upper mantle. The anisotropy of the crust in the vicinity of the Longmenshan fault zone is complex and the azimuthal anisotropy of the surface wave is different from the weak anisotropy of SKS splitting by NW-SE, indicating that the shear wave anisotropy may be from the deeper mantle and needs further research.
-
-
图 1 川西地区构造简图(引自邓起东等,2002)
F1:理塘断裂;F2:鲜水河断裂;F3:大凉山断裂;F4:龙门山断裂带;F5:龙泉山断裂;F6:华蓥山断裂;F7:丽江—小金河断裂;F8:安宁河断裂;F9:小江断裂
Figure 1. Tectonic settings of western Sichuan region (after Deng et al,2002)
F1:Litang fault;F2:Xianshuihe fault;F3:Daliangshan fault;F4:Longmenshan fault zone;F5:Longquanshan fault;F6:Huayingshan fault;F7:Lijiang-Xiaojinhe fault; F8: Anninghe fault;F9:Xiaojiang fault
图 9 研究区地壳厚度分布图(引自Wang et al,2017)
Figure 9. The distributions of the crustal thickness (after Wang et al,2017)
图 11 周期为18 s (a)和50 s (b)的面波方位各向异性与接收函数各向异性和SKS各向异性的对比
图中接收函数各向异性结果来自Zheng等(2018);SKS各项异性结果来自Flesch 等(2005),常利军等(2008)和Wang 等(2008)
Figure 11. Comparison of Rayleigh wave azimuthal anisotropy at 18 s (a) and 50 s (b) periods with receiver function anisotropy and SKS anisotropy
The receiver function anisotropy refers from Zheng et al (2018),and SKS anisotropy are from Flesch et al (2005),Chang et al (2008) and Wang et al (2008)
-
常利军,王椿镛,丁志峰. 2008. 四川及邻区上地幔各向异性研究[J]. 中国科学:D辑,<bold>38</bold>(12):1589–1599. Chang L J,Wang C Y,Ding Z F. 2008. Seismic anisotropy of upper mantle in Sichuan and adjacent regions[J]. <italic>Science in China</italic>:<italic>Series D</italic>,<bold>51</bold>(12):1683–1693.
崔仲雄,裴顺平. 2009. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究[J]. 地球物理学报,<bold>52</bold>(9):2245–2254. doi: 10.3969/j.issn.0001-5733.2009.09.008 Cui Z X,Pei S P. 2009. Study on Pn velocity and anisotropy in the upper most mantle of the Eastern Himalayan Syntaxis and surrounding regions[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>52</bold>(9):2245–2254 (in Chinese).
邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,<bold>32</bold>(12):1020–1030. Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. <italic>Science in China</italic>:<italic>Series D</italic>,<bold>46</bold>(4):356–372.
范莉苹,吴建平,房立华,王未来. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报,<bold>58</bold>(5):1555–1567. doi: 10.6038/cjg20150509 Fan L P,Wu J P,Fang L H,Wang W L. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>58</bold>(5):1555–1567 (in Chinese).
高原,石玉涛,陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响[J]. 科学通报,<bold>63</bold>(19):1934–1948. Gao Y,Shi Y T,Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the <italic>M</italic><sub>S</sub>8.0 Wenchuan earthquake[J]. <italic>Chinese Science Bulletin</italic>,<bold>63</bold>(19):1934–1948 (in Chinese). doi: 10.1360/N972018-00317
刘启元,李昱,陈九辉,郭飚,李顺成,王峻,张绪奇,齐少华. 2009. 汶川<italic>M</italic><sub>S</sub>8.0地震:地壳上地幔S波速度结构的初步研究[J]. 地球物理学报,<bold>52</bold>(2):309–319. Liu Q Y,Li Y,Chen J H,Guo B,Li S C,Wang J,Zhang X Q,Qi S H. 2009. Wenchuan <italic>M</italic><sub>S</sub>8.0 earthquake:Preliminary study of the S wave velocity structure of the crust and upper mantle[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>52</bold>(2):309–319 (in Chinese).
鲁来玉,何正勤,丁志峰,王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报,<bold>57</bold>(3):822–836. doi: 10.6038/cjg20140312 Lu L Y,He Z Q,Ding Z F,Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>57</bold>(3):822–836 (in Chinese).
石玉涛,高原,张永久,王辉,姚志祥. 2013. 松潘—甘孜地块东部、川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报,<bold>56</bold>(2):481–494. doi: 10.6038/cjg20130212 Shi Y T,Gao Y,Zhang Y J,Wang H,Yao Z X. 2013. Shear wave splitting in the crust in eastern Songpan-Garze block,Sichuan-Yunnan block and western Sichuan basin[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>56</bold>(2):481–494 (in Chinese).
石玉涛,高原,赵翠萍,姚志祥,太龄雪,张永久. 2009. 汶川地震余震序列的地震各向异性[J]. 地球物理学报,<bold>52</bold>(2):398–407. Shi Y T,Gao Y,Zhao C P,Yao Z X,Tai L X,Zhang Y J. 2009. A study of seismic anisotropy of Wenchuan earthquake sequence[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>52</bold>(2):398–407 (in Chinese).
太龄雪,高原,刘庚,肖卓. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性:第一期观测资料的剪切波分裂特征[J]. 地球物理学报,<bold>58</bold>(11):4079–4091. Tai L X,Gao Y,Liu G,Xiao Z. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data:Shear-wave splitting from temporary observations of the first phase[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>58</bold>(11):4079–4091 (in Chinese).
王苏,徐晓雅,胡家富. 2015. 青藏高原东南缘的地壳结构与动力学模式研究综述[J]. 地球物理学报,<bold>58</bold>(11):4235–4253. Wang S,Xu X Y,Hu J F. 2015. Review on the study of crustal structure and geodynamic models for the southeast margin of the Tibetan Plateau[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>58</bold>(11):4235–4253 (in Chinese).
吴建平,杨婷,王未来,明跃红,张天中. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报,<bold>56</bold>(07):2257–2267. Wu J P,Yang T,Wang W L,Ming Y H,Zhang T Z. 2013. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>56</bold>(7):2257–2267 (in Chinese).
熊绍柏,郑晔,尹周勋,曾晓献,全幼黎,孙克忠. 1993. 丽江—攀枝花—者海地带二维地壳结构及其构造意义[J]. 地球物理学报,<bold>36</bold>(04):434–444. doi: 10.3321/j.issn:0001-5733.1993.04.004 Xiong S B,Zheng Y,Yin Z X,Zeng X X,Quan Y L,Sun K Z. 1993. The 2-D structure and its tectonic implication of the crust in the Lijiang-Panzhihua-Zhehai region[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>36</bold>(4):434–444 (in Chinese).
钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,<bold>60</bold>(6):2304–2314. Zhong S J,Wu J P,Fang L H,Wang W L,Fan L P,Wang H F. 2017. Surface wave eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>60</bold>(6):2304–2314 (in Chinese).
Chen Y,Zhang Z J,Sun C Q,Badal J. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. <italic>Gond Res</italic>,<bold>24</bold>(3/4):946–957. doi: 10.1016/j.gr.2012.04.003
Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. <italic>Geology</italic>,<bold>28</bold>(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media[J]. <italic>Wave Motion</italic>,<bold>3</bold>(4):343–391. doi: 10.1016/0165-2125(81)90026-3
England P,Houseman G. 1986. Finite strain calculations of continental deformation:Comparison with the India-Asia collision zone[J]. <italic>J Geophys Res Atmos</italic>,<bold>91</bold>(B3):3664–3676.
Flesch L M,Holt W E,Silver P G,Stephenson M,Wang C Y,Chan W W. 2005. Constraining the extent of crust-mantle coupling in Central Asia using GPS,geologic,and shear wave splitting data[J]. <italic>Earth Planet Sci Lett</italic>,<bold>238</bold>(1/2):248–268.
Gee L S,Jordan T H. 1992. Generalized seismological data functionals[J]. <italic>Geophys J Int</italic>,<bold>111</bold>(2):363–390. doi: 10.1111/j.1365-246X.1992.tb00584.x
Jin G,Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. <italic>Geophys J Int</italic>,<bold>201</bold>(3):1383–1398. doi: 10.1093/gji/ggv079
Ko B,Jung H. 2015. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. <italic>Nat Commun</italic>,<bold>6</bold>:6586. doi: 10.1038/ncomms7586
Li C X,He D F,Sun Y P,He J Y,Jiang Z X. 2015. Structural characteristic and origin of intra-continental fold belt in the eastern Sichuan basin,South China block[J]. <italic>Asian Earth Sci</italic>,<bold>111</bold>:206–221. doi: 10.1016/j.jseaes.2015.07.027
Lin F C,Ritzwoller M H,Snieder R. 2009. Eikonal tomography:Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. <italic>Geophys J Int</italic>,<bold>177</bold>(3):1091–1110. doi: 10.1111/j.1365-246X.2009.04105.x
Lin F C,Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. <italic>Geophys J Int</italic>,<bold>186</bold>(3):1104–1120. doi: 10.1111/j.1365-246X.2011.05070.x
Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. <italic>Nature Geoscience</italic>,<bold>7</bold>(5):361–365. doi: 10.1038/ngeo2130
Montagner J P,Griot-Pommera D,Lavé J. 2000. How to relate body wave and surface wave anisotropy?[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>105</bold>(B8):19015–19027. doi: 10.1029/2000JB900015
Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. <italic>Science</italic>,<bold>276</bold>(5313):788–790. doi: 10.1126/science.276.5313.788
Royden L H,Burchfiel B C,van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. <italic>Science</italic>,<bold>321</bold>(5892):1054–1058. doi: 10.1126/science.1155371
Smith M L,Dahlen F A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>78</bold>(17):3321–3333. doi: 10.1029/JB078i017p03321
Tapponnier P,Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. <italic>Nature</italic>,<bold>264</bold>(5584):319–324. doi: 10.1038/264319a0
Wang C Y,Flesch L M,Silver P G,Chang L J,Chan W W. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications[J]. <italic>Geology</italic>,<bold>36</bold>(5):363–366. doi: 10.1130/G24450A.1
Wang C Y,Zhu L P,Lou H,Huang B S,Yao Z X,Luo X H. 2010. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>115</bold>(B11):B11301. doi: 10.1029/2010JB007527
Wang W L,Wu J P,Fang L H,Lai G J,Yang T,Cai Y. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>119</bold>(2):1061–1078. doi: 10.1002/2013JB010317
Wang W L,Wu J P,Fang L H,Lai G,Cai Y. 2017. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>122</bold>(9):7219–7235. doi: 10.1002/2017JB013978
Xiong X S,Gao R,Wang H Y,Zhang J S,Guo L H,Yang T,Cai Y. 2016. Frozen subduction in the Yangtze block:Insights from the deep seismic profiling and gravity anomaly in east Sichuan fold belt[J]. <italic>Earthquake Science</italic>,<bold>29</bold>(2):61–70. doi: 10.1007/s11589-016-0140-9
Zheng T,Ding Z F,Ning J Y,Chang L J,Wang X C,Kong F S,Liu Kelly H,Gao Stephen S. 2018. Crustal azimuthal anisotropy beneath the southeastern Tibetan Plateau and its geodynamic implications[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>123</bold>(11):9733–9749. doi: 10.1029/2018JB015995