液化场地强震记录的频谱特征

徐国林, 陈龙伟

徐国林, 陈龙伟. 2019: 液化场地强震记录的频谱特征. 地震学报, 41(5): 671-679. DOI: 10.11939/jass.20190112
引用本文: 徐国林, 陈龙伟. 2019: 液化场地强震记录的频谱特征. 地震学报, 41(5): 671-679. DOI: 10.11939/jass.20190112
Xu Guolin, Chen Longwei. 2019: Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites. Acta Seismologica Sinica, 41(5): 671-679. DOI: 10.11939/jass.20190112
Citation: Xu Guolin, Chen Longwei. 2019: Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites. Acta Seismologica Sinica, 41(5): 671-679. DOI: 10.11939/jass.20190112

液化场地强震记录的频谱特征

基金项目: 国家自然科学基金项目(51768065)
详细信息
    通讯作者:

    徐国林: e-mail:guolinxu@163.com

  • 中图分类号: P315.9

Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites

  • 摘要: 为研究液化场地上建筑物承受地震作用的特性,本文利用11组液化场地实测记录,对液化场地的地震动特征进行了分析。结果显示,场地液化后,地表加速度幅值减小,长周期成分显著增多,记录中出现明显的 “尖刺” 。对比国内外抗震规范设计反应谱与液化场地实测加速度反应谱,分析得出:在短周期T<0.3 s,规范设计反应谱值与实测记录反应谱基本一致;在中长周期段0.3 s<T<1.5 s,规范反应谱值明显低于实测记录反应谱值;在长周期段T>1.5 s,规范设计谱较实测记录反应谱值略低。基于5种数值方法模拟的液化场地地震动结果显示:周期T<1.0 s时,数值计算的反应谱值基本高于液化场地实测反应谱值,或与之吻合;而周期T>1.0 s时,数值计算的反应谱值均低于液化场地实测反应谱值。
    Abstract: To understand the characteristics of earthquake action on buildings at potentially lique-fiable sites, 11 acceleration records from the selected liquefied sites were analyzed to discuss the characteristics of ground motion. The results showed that the acceleration amplitudes were remarkably reduced after initial site liquefaction and that the long-period components increased significantly with apparent " spikes” recorded. Comparison of the design spectra widely used in seismic design codes, both domestically and internationally, with the acceleration spectra obtained in this study shows that: in the short period range T<0.3 s, the design spectra were consistent with the recorded response spectra; in the medium and long period range 0.3 s<T<1.5 s, the design spectra were smaller significantly than the recorded response spectra; in the long period range T>1.5 s, the design spectra was a little smaller than the recorded spectra. Five typical numerical methods are used to simulate liquefaction acceleration, the results demonstrated that the numerical methods could satisfactorily predict response spectral values for the period range T<1.0 s, but generally lower than the spectral values for the long-period T>1.0 s.
  • 图  1   1995年神户地震中港岛液化场地水平向30° (a)和60° (b)的加速度记录

    Figure  1.   Acceleration time histories with horizontal angle both 30° (a) and  60° (b) recorded at Port Island in the 1995 Kobe earthquake

    图  2   1987迷信山地震中WLA的两条加速度时程记录

    Figure  2.   Two acceleration time histories recorded at WLA in the 1987 Superstition Hills earthquake

    图  3   WLA的加速度记录时间-频率谱

    Figure  3.   Time-frequency spectrum of WLA acceleration record

    图  4   液化场地地震动加速度反应谱Sa (a)和位移反应谱Sd (b)

    Figure  4.   Response spectra of ground motion acceleration (a) and displacement (b) at the collected liquefied sites

    图  5   新西兰抗震设计规范NZS 1170.5 与2011年基督城地震的实测液化场加速度反应谱对比

    Figure  5.   Comparison of seismic design spectra NZS 1170.5 with the acceleration response spectra at liquefied sites in 2011 Christchurch earthquake

    图  6   不同规范的基本地震设计谱与液化场地加速度反应谱对比

    Figure  6.   Comparison of seismic design spectra by different seismic design codes with the acceleration response spectra at the liquefied sites

    图  7   WLA试验场井下7.5 m处记录的两条迷信山地震的加速度时程

    Figure  7.   Two acceleration time histories of the Superstition earthquake recorded at the WLA site 7.5 m underground

    图  8   迷信山地震中WLA试验场记录的两条实测加速度时程与不同数值方法得到的地表加速度时程对比

    Figure  8.   Comparison of acceleration time histories of the Superstition earthquake calculated by different numerical methods with two acceleration time histories recorded at WLA

    图  9   实测记录加速度反应谱与不同数值方法计算的地表加速度反应谱对比

    Figure  9.   Comparison of ground acceleration response spectra by different numerical methods with the res-ponse spectrum calculated by recorded accelerations

    表  1   WLA场地土层参数 (Youd,Carter,2005

    Table  1   Soil parameters of WLA site (Youd ,Carter,2005

    土层
    编号
    土类厚度/m干密度
    /(kN·m−3
    vS/(m·s−1
    1粉土至含黏粉土315.7120
    2粉砂至砂质粉土417.3140
    3粉质黏土820.4190
    下载: 导出CSV
  • 董林,王兰民,夏坤,袁晓铭. 2015. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报,37(12):2320–2325. doi: 10.11779/CJGE201512024

    Dong L,Wang L M,Xia K,Yuan X M. 2015. Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering,37(12):2320–2325 (in Chinese).

    李兆焱,袁晓铭. 2016. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 地震工程与工程振动,36(3):1–7.

    Li Z Y,Yuan X M. 2016. Seismic damage summarization of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. Earthquake Engineering and Engineering Vibration,36(3):1–7 (in Chinese).

    刘恢先. 1989. 唐山大地震震害[M]. 北京: 地震出版社: 301−338.

    Liu H X. 1989. Earthquake Damage of the Tangshan Earthquake[M]. Beijing: Seismological Press: 301−338 (in Chinese).

    孙锐,袁晓铭. 2004. 液化土层地震动特征分析[J]. 岩土工程学报,26(5):684–690. doi: 10.3321/j.issn:1000-4548.2004.05.023

    Sun R,Yuan X M. 2004. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering,26(5):684–690 (in Chinese).

    孙锐,袁晓铭. 2010. 场地液化对反应谱影响评价[J]. 应用基础与工程科学学报,18(增刊1):173–180.

    Sun R,Yuan X M. 2010. Evaluation for effect of site liquefaction on response spectrum[J]. Journal of Basic Science and Engineering,18(S1):173–180 (in Chinese).

    袁晓铭,曹振中. 2014. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报,47(4):99–108.

    Yuan X M,Cao Z Z. 2014. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal,47(4):99–108 (in Chinese).

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2015. GB 18306—2015中国地震动参数区划图[S]. 北京: 中国标准出版社: 239−241.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. 2016. GB 18306−2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: China Standards Publishing House: 239−241 (in Chinese).

    Building Seismic Safety Council, The Federal Emerency Management Agency. 2009. NEHRP Recommended Seismic Provisions[R]. Washington D C: Building Seismic Safety Council: 5−9.

    Chen L W,Yuan X M,Sun R. 2011. Simplified modeling of ground motion on liquefied sites under seismic loading[J]. Adv Mater Res,243/249:2842–2851. doi: 10.4028/www.scientific.net/AMR.243-249.2842

    Cubrinovski M,Bradley B A,Wotherspoon L,Green R,Bray J,Wood C,Pender M,Allen J,Bradshaw A,Rix G,Taylor M,Robinson K,Henderson D,Giorgini S,Ma K,Winkley A,Zupan J,O’Rourke T,DePascale G,Wells D. 2011. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bull New Zealand Soc Earthq Eng,44(4):205–226.

    European Committee for Standardization. 2004. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussells: Management Centre: 19−30.

    Holzer T L,Youd T L,Hanks T C. 1989. Dynamics of liquefaction during the 1987 Superstition Hills,California,earth-quake[J]. Science,244(4900):56–59. doi: 10.1126/science.244.4900.56

    Idriss I M, Boulanger R W. 2008. Liquefaction During Earthquake[M]. Oakland: Earthquake Engineering Research Institute.

    Idriss I M,Boulanger R W. 2015. 2nd Ishihara lecture:SPT- and CPT-based relationships for the residual shear strength of liquefied soils[J]. Soil Dyn Earthq Eng,68:57–68. doi: 10.1016/j.soildyn.2014.09.010

    International Code Council. 2004. 2003 International Building Code[S]. Falls Church: International Code Council, INC: 16-77−16-106.

    Ishihara K,Yoshimine M. 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes[J]. Soils Found,32(1):173–188. doi: 10.3208/sandf1972.32.173

    Seed H B, Idriss I M. 1970. A Simplified Procedure for Evaluating Soil Liquefaction Potential, U. S. Earthquake Engineering Research Centre Report No. EERC 70-9[R]. Berkeley: University of California at Berkeley: 1249−1273.

    The Council of Standards of New Zealand. 2004. NZS 1170.5: 2004 Structural Design Actions Part 5: Earthquake Actions - New Zealand[S]. Wellington: New Zealand Standard: 10−33.

    Youd T L. 1998. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Sites, Technical Report MCEER-98-0005[R]. Buffalo: Multidisciplinary Center for Earthquake Engineering Research: 58.

    Youd T L,Holzer T L. 1994. Piezometer performance at wildlife liquefaction site,California[J]. J Geotech Eng,120(6):975–995. doi: 10.1061/(ASCE)0733-9410(1994)120:6(975)

    Youd T L,Idriss I M. 2001. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. J Geotech Geoenviron Eng,127(4):297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    Youd T L,Carter B L. 2005. Influence of soil softening and liquefaction on spectral acceleration[J]. J Geotech Geoenviron Eng,131(7):811–825. doi: 10.1061/(ASCE)1090-0241(2005)131:7(811)

图(9)  /  表(1)
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  737
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-07-08
  • 网络出版日期:  2019-08-29
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回