直下型断层的破裂速度对盆地地震效应的影响

韩天成, 于彦彦, 丁海平

韩天成, 于彦彦, 丁海平. 2020: 直下型断层的破裂速度对盆地地震效应的影响. 地震学报, 42(4): 457-470. DOI: 10.11939/jass.20190177
引用本文: 韩天成, 于彦彦, 丁海平. 2020: 直下型断层的破裂速度对盆地地震效应的影响. 地震学报, 42(4): 457-470. DOI: 10.11939/jass.20190177
Han Tiancheng, Yu Yanyan, Ding Haiping. 2020: Influence of rupture velocity of the directly-beneath fault on the basin seismic effect. Acta Seismologica Sinica, 42(4): 457-470. DOI: 10.11939/jass.20190177
Citation: Han Tiancheng, Yu Yanyan, Ding Haiping. 2020: Influence of rupture velocity of the directly-beneath fault on the basin seismic effect. Acta Seismologica Sinica, 42(4): 457-470. DOI: 10.11939/jass.20190177

直下型断层的破裂速度对盆地地震效应的影响

基金项目: 国家自然科学基金青年基金项目(51808371)和江苏省高等学校自然科学研究面上项目(18KJB560017)联合资助
详细信息
    通讯作者:

    于彦彦: e-mail:yyy_usts@126.com

  • 中图分类号: P315.9

Influence of rupture velocity of the directly-beneath fault on the basin seismic effect

  • 摘要: 首先基于有限断层破裂下的运动学震源模型,对比验证了三维谱元法对于近场地震动的模拟精度。 进而通过含盆地模型与不含盆地的一维水平成层模型的地震动强度之间和放大系数分布特征之间的对比,详细研究了直下型断层的破裂速度对盆地地震效应的影响。结果表明,盆地的存在会显著改变近断层地震动的分布特征,同时盆地内不同分量强地震动的分布特征变化较大。断层破裂速度对盆地地震效应影响显著,随破裂速度的增大盆地地震动强度逐渐增加,但不同分量上地震动强度的增加速率显著不同,受盆地效应的影响,放大系数表现出与强地震动不同的分布特征。盆地放大系数整体表现出随破裂速度的增加而减小的趋势,但不同分量放大系数所受影响程度差异明显。同时,盆地内地震动强烈放大区域的位置也受破裂速度的显著影响,但其总体上集中在断层两侧区域及垂直于破裂方向的盆地边缘附近。
    Abstract: Earthquakes caused by strike-slip fault often lead to serious earthquake damage to the cities above the basin when the fault rupture parameters have a significant effect on basin amplification. In this paper, the simulation accuracy of 3D spectral element method for near field vibration is contrasted under the kinematic source model based on the finite fault rupture. Then, by comparing the distribution characteristics of seismic intensity and amplification factor between the basin model and the one-dimensional horizontal layered model with no basin, the influence of the rupture velocity of the fault buried directly beneath the basin on the seismic effect of the basin is studied in detail. The results show that the existence of the basin will significantly change the distribution characteristics of near-fault ground motions, but the distribution characteristics of strong ground motions of different components in the basin will be significantly different. The amplification factor appears different distribution characteristics from strong ground motion with the influence of basin effect. The influence of fault rupture velocity on seismic effect of basin is significant. With the increase of rupture velocity, the ground motion intensity of the basin increases gradually, but the increase rate of different components is significantly different. The amplification factor of the basin overall shows a trend of decreasing with the rupture velocity increasement, but the influence degree for the amplification factor of different components is obviously different. Meanwhile, the location of the area with strong amplification in the basin is also significantly affected by the rupture velocity, but generally concentrated on both sides of the fault as well as near the basin edge perpendicular to the rupture direction.
  • 图  1   三维均匀半空间验证模型

    Figure  1.   3D uniform half-space verification model

    图  2   震源钟形滑动速率时间函数的时程 (a)及其对应的傅里叶振幅谱 (b)

    Figure  2.   Source bell-shaped slip-rate time history (a) and its Fourier spectrum (b)

    图  3   谱元程序和COMPSYN程序模拟得到的观测点A沿x向的结果与全空间解析解对比

    (a) 位移时程;(b) 位移时程对应的频谱

    Figure  3.   Comparison of the simulated results of point A along the x direction obtained from the spectral element method and COMPSYN program and full-space analytical solution

    (a) Displacement time-history;(b) Corresponding spectrum

    图  4   三维盆地及有限断层计算模型

    Figure  4.   3D-basin and finite fault calculation model

    图  5   模型观测点分布

    (a) 整个模型的地表区域;(b) 局部放大的盆地地表区域

    Figure  5.   Distribution of observation points for the model

    (a) The surface area of the whole model; (b) The surface area of the enlarged basin

    图  6   震源滑动速率时间函数(a)及其对应的傅里叶振幅谱(b)

    Figure  6.   Slip rate time function (a) and its Fourier spectrum (b) of the source

    图  7   FP分量的水平成层模型PGV (a)、含盆地模型PGV (b)、盆地内PGV (c)及盆地内PGV放大系数AF (d)的分布

    Figure  7.   Distribution of PGV of horizontal stratification model (a), PGV of basin model (b),PGV inside the basin (c) and amplification factor of PGV inside the basin (d) of FP component

    图  8   FN分量的水平成层模型PGV (a)、含盆地模型PGV (b)、盆地内PGV (c)及盆地内PGV放大系数AF (d)的分布

    Figure  8.   Distribution of PGV of horizontal stratification model (a),PGV of basin model (b),PGV inside the basin (c) and amplification factor of PGV inside the basin (d) of FN component

    图  9   UD分量的水平成层模型PGV (a)、含盆地模型PGV (b)、盆地内PGV (c)及盆地内PGV放大系数AF (d) 的分布

    Figure  9.   Distribution of PGV of horizontal stratification model (a),PGV of basin model (b),PGV inside the basin (c) and amplification factor of PGV inside the basin (d) of UD component

    图  10   不同破裂速度vr下盆地内三分量的峰值速度PGV分布

    (a) 平行断层走向分量;(b) 垂直断层走向分量;(c) 竖向分量

    Figure  10.   Distribution of PGV for three components in the basin under different rupture velocities vr

    (a) Fault-strike-parallel component; (b) Fault-strike-perpendicular component; (c) Vertical component

    图  11   不同破裂速度vr下盆地内三分量的放大系数AF分布

    (a) 平行断层走向分量;(b) 垂直断层走向分量;(c) 竖向分量

    Figure  11.   Amplification factor distribution of three components in the basin under different rupture velocities vr

    (a) Fault-strike-parallel component; (b) Fault-strike-perpendicular component; (c) Vertical component

    图  12   不同破裂速度vr下盆地内三分量峰值速度PGV的最大值(a)及平均值(b)

    Figure  12.   Maximum (a) and average (b) value of PGV for three components in the basin under different rupture velocities vr

    图  13   不同破裂速度vr下盆地内三分量峰值速度PGV的放大系数AF的最大值(a)及平均值(b)

    Figure  13.   Maximum (a) and average (b) values of amplification factor for three components PGV in the basin under different rupture velocities vr

    图  14   破裂速度vr=1.44 (a),1.68 (b),1.92 (c)和2.16 (d) km/s时观测点B模拟FN分量的速度时程频谱

    Figure  14.   Spectrum of velocity time-history for FN component of point B when rupture velocities vr=1.44 (a),1.68 (b),1.92 (c) and 2.16 (d) km/s,respectively

    图  15   阻抗比IC分别为4.33 (a)和24.32 (b)时盆地内FN分量的PGV分布

    Figure  15.   PGV distribution of FN component in the basin when impedance contrast IC is 4.33 (a) and 24.32 (b)

    图  16   阻抗比IC分别为4.33 (a)和24.32 (b)时盆地内FN分量的放大系数AF分布

    Figure  16.   Amplification factor AF distribution of FN component in the basin when impedance contrast IC is 4.33 (a) and 24.32 (b)

    表  1   盆地模型的介质参数

    Table  1   Medium parameters of basin model

    名称vS/(km·s−1vP/(km·s−1ρ/(g·cm−3
    盆地外2.45.22.4
    盆地内0.72.01.9
    下载: 导出CSV

    表  2   不同阻抗比模型的介质参数对比

    Table  2   Comparison of medium parameters for different impedance contrast model

    vS/(km·s−1 ρ/(g·cm−3阻抗比IC
    (盆地外/盆地内)
    盆地外盆地内盆地外盆地内
    改变前 2.4 0.7 2.4 1.9 4.33
    改变后 3.0 0.256 4.15 2.0 24.32
    下载: 导出CSV
  • 郭恩,周锡元. 2010. 汶川地震盆地效应的思考与建议[J]. 防灾减灾工程学报,30(4):459–465.

    Guo E,Zhou X Y. 2010. Study on basin effects of Wenchuan earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering,30(4):459–465 (in Chinese).

    廖树超,于彦彦,丁海平. 2018. 基于Lamb问题的谱元法和有限元法模拟精度比较[J]. 世界地震工程,34(3):188–196.

    Liao S C,Yu Y Y,Ding H P. 2018. Comparison of simulation precision between spectral element method and finite element method based on lamb problem[J]. World Earthquake Engineering,34(3):188–196 (in Chinese).

    刘启方. 2005. 基于运动学和动力学震源模型的近断层地震动研究[D]. 北京: 中国地震局工程力学研究所: 26–30.

    Liu Q F. 2005. Studies on Near-Fault Ground Motions Based on Kinematic and Dynamic Source Models[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration : 26–30 (in Chinese).

    刘启方,金星,丁海平. 2008. 复杂场地条件下震源参数对断层附近长周期地震动的影响[J]. 地球物理学报,51(1):186–196. doi: 10.3321/j.issn:0001-5733.2008.01.023

    Liu Q F,Jin X,Ding H P. 2008. Effects of the source parameters on long period near-fault ground motion in the case of complex site condition[J]. Chinese Journal of Geophysics,51(1):186–196 (in Chinese).

    刘启方,李雪强. 2011. 唐山大地震近场宽频带地震动模拟[J]. 地震工程与工程振动,31(5):1–7.

    Liu Q F,Li X Q. 2011. Broad-band strong motion simulation of the great Tangshan earthquake[J]. Earthquake Engineering and Engineering Vibration,31(5):1–7 (in Chinese).

    刘中宪,刘明珍,韩建斌. 2017. 近断层沉积盆地强地震动谱元模拟[J]. 世界地震工程,33(4):76–86.

    Liu Z X,Liu M Z,Han J B. 2017. Spectral-element simulation of strong ground motion in the near-fault alluvial basin[J]. World Earthquake Engineering,33(4):76–86 (in Chinese).

    Beresnev I A,Atkinson G M. 1997. Modelling finite-fault radiation from the ω n spectrum[J]. Bull Seismol Soc Am,87(1):67–84.

    Bindi D,Luzi L,Parolai S,Di Giacomo D,Monachesi G. 2011. Site effects observed in alluvial basins:The case of Norcia (Central Italy)[J]. Bull Earthq Eng,9(6):1941–1959. doi: 10.1007/s10518-011-9273-3

    Furumura T,Koketsu K. 1998. Specific distribution of ground motion during the 1995 Kobe earthquake and its generation mechanism[J]. Geophys Res Lett,25(6):785–788. doi: 10.1029/98GL50418

    Graves R W,Aagaard B T,Hudnut K W,Star L M,Stewart J P,Jordan T H. 2008. Broadband simulations for MW7.8 southern San Andreas earthquakes:Ground motion sensitivity to rupture speed[J]. Geophys Res: Lett,35(22):L22302. doi: 10.1029/2008GL035750

    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res: Solid Earth,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348

    Horike M,Uebayashi H,Takeuchi Y. 1990. Seismic response in three-dimensional sedimentary basin due to plane S wave incidence[J]. J Phys Earth,38(4):261–284. doi: 10.4294/jpe1952.38.261

    Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822. doi: 10.1046/j.1365-246x.1999.00967.x

    Moschetti M P,Hartzell S H,Ramirez-Guzman L,Frankel A D,Angster S J,Stephenson W J. 2017. 3D ground-motion simulations of MW7 earthquakes on the Salt Lake City segment of the Wasatch fault zone:Variability of long-period (T≥1 s) ground motions and sensitivity to kinematic rupture parameters[J]. Bull Seismol Soc Am,107(4):1704–1723.

    Patera A T. 1984. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. J Computat phys,54(3):468–488. doi: 10.1016/0021-9991(84)90128-1

    Pitarka A,Irikura K,Iwata T,Sekiguchi H. 1998. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe),Japan,earthquake[J]. Bull Seismol Soc Am,88(2):428–440.

    Somerville P,Irikura K,Graves R,Sawada R,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59

    Spudich P, Xu L S. 2002. Documentation of Software Package Compsyn sxv3. 11: Programs for Earthquake Ground Motion Calculation Using Complete 1-D Green’s Functions[M]. Pittsburgh: Academic Press: 26–64.

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

    Wirth E A,Vidale J E,Frankel A D,Pratt T L,Marafi N,Thompson M,Stephenson W J. 2019. Source-dependent amplification of earthquake ground motions in deep sedimentary basins[J]. Geophys Res Lett,46(12):6443–6450. doi: 10.1029/2019GL082474

    Yu Y Y,Ding H P,Liu Q F. 2017. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. Bull Earthq Eng,15(11):4661–4679. doi: 10.1007/s10518-017-0154-2

图(16)  /  表(2)
计量
  • 文章访问数:  1048
  • HTML全文浏览量:  486
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-04-05
  • 网络出版日期:  2020-08-26
  • 发布日期:  2020-07-14

目录

    /

    返回文章
    返回