Numerical analysis of effect of reverse fault dislocation on tunnel engineering
-
摘要: 由于断层错动导致的围岩永久变形会对隧道结构产生危害,为研究隧道在逆断层错动下的变形与受力特征,本文以成兰铁路穿越北川—映秀断裂的跃龙门隧道工程为研究对象,利用Abaqus软件建立穿越逆断层隧道结构的数值模型,选择参数和设定边界条件,模拟分析在逆断层错动作用下隧道衬砌结构的受力与变形情况。结果表明:逆断层错动引起隧道衬砌结构发生了“S”状弯曲变形,衬砌结构的纵向应力随断层位错量的增加而增加,整体表现为衬砌顶部与底部所受拉压应力分布相反;衬砌顶部拉压应力值均大于底部,且衬砌顶部和底部的压应力值均大于拉应力。Abstract: The permanent deformation of surrounding rock caused by fault dislocation will do harm to tunnel structure. In order to study the deformation and stress characteristics of tunnel under reverse fault dislocation, this paper takes Yuelongmen tunnel project of Chengdu-Lanzhou railway crossing Beichuan-Yingxiu fault as the research object. Using Abaqus software, the numerical model of tunnel structure crossing reverse fault is established, parameters are selected and boundary conditions are set. The stress and deformation of tunnel lining structure under reverse fault displacement are simulated and analyzed. The results show that the S-shaped bending deformation of the tunnel lining structure is caused by the reverse fault dislocation, and the longitudinal stress of the lining structure increases with the increase of fault dislocation, which shows that the tensile and compressive stress distribution at the top and bottom of the lining is opposite. The tensile and compressive stresses at the top of the lining are greater than those at the bottom, and the compressive stresses at the top and bottom of the lining are greater than the tensile stresses.
-
Keywords:
- reverse fault /
- dislocation quantity /
- tunnel /
- lining /
- numerical simulation
-
-
图 7 不同竖向位错作用下衬砌纵向应力曲线
纵坐标为正值表示拉应力,为负值表示压应力(a) 逆断层倾角为30°;(b) 逆断层倾角为45°; (c) 逆断层倾角为60°;
Figure 7. Longitudinal stress curves of lining under different vertical dislocations
Tensile stress is indicated when longitudinal stress is positive,and negative denotes compressive stress (a) The dip angle of reverse fault is 30°;(b) The dip angle of reverse fault is 45°;(c) The dip angle of reverse fault is 60°
表 1 介质物理力学参数
Table 1 Physical mechanics parameters of medium
材料 密度
/(kg·m−3)弹性模量
/MPa泊松比 黏聚力
/MPa内摩擦角
/°围岩 2300 10000 0.250 0.25 30 破碎带 2000 5000 0.300 0.30 25 衬砌 2500 30000 0.167 表 2 拉压应力分布区间和最大值
Table 2 Range and maximum value of tensile and compressive stress distribution
断层倾角/° 衬砌位置 受拉区间/m 拉应力最大值/MPa 受压区间/m 压应力最大值/MPa 30 顶部 400—440 41 440—500 123 底部 460—500 23 400—460 101 45 顶部 400—440 47 440—500 167 底部 460—500 29 400—460 118 60 顶部 400—440 46 440—500 143 底部 460—500 34 400—460 108 -
陈熹. 2017. 活动断层错动下跨断层隧道动力响应及破坏机理研究[D]. 成都: 西南交通大学: 10–19. Chen X. 2017. Study on Dynamic Response and Failure Mechanism of the Crossing-Fault Tunnel Under the Action of Active Fault[D]. Chengdu: Southwest Jiaotong University: 10–19 (in Chinese).
胡辉. 2013. 穿越活动断层的隧道减震结构研究[D]. 成都: 西南交通大学: 55–57. Hu H. 2013. Study on Aseismic Structure for Tunnel Passing Through Active Fault[D]. Chengdu: Southwest Jiaotong University: 55–57 (in Chinese).
焦鹏飞,来弘鹏. 2019. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报,52(2):106–117. Jiao P F,Lai H P. 2019. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal,52(2):106–117 (in Chinese).
邵润萌. 2011. 断层错动作用下隧道工程损伤及岩土失效扩展机理研究[D]. 北京: 北京交通大学: 13–28. Shao R M. 2011. Study on the Mechanism of Tunnel Damage and Geotechnical Failure Propagation Due to Fault Rupture[D]. Beijing: Beijing Jiaotong University: 13–28 (in Chinese).
孙飞,张志强,易志伟. 2019. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学,40(8):3037–3044. Sun F,Zhang Z Q,Yi Z W. 2019. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics,40(8):3037–3044 (in Chinese).
熊炜,范文,彭建兵,邓龙胜,闫芙蓉. 2010. 正断层活动对公路山岭隧道工程影响的数值分析[J]. 岩石力学与工程学报,29(增刊):2845–2852. Xiong W,Fan W,Peng J B,Deng L S,Yan F R. 2010. Numerical analysis of effect of normal fault activity on road mountain tunnel project[J]. Chinese Journal of Rock Mechanics and Engineering,29(S1):2845–2852 (in Chinese).
张丽芬,姚运生. 2013. 震源动力学破裂过程数值模拟研究[J]. 地震学报,35(4):604–615. doi: 10.3969/j.issn.0253-3782.2013.04.014 Zhang L F,Yao Y S. 2013. Review on numerical simulation of dynamic rupture process of earthquake source[J]. Acta Seismologica Sinica,35(4):604–615 (in Chinese).
赵宝平. 2018. 逆断层错动对公路隧道影响研究[J]. 公路,63(11):329–332. Zhao B P. 2018. Study on the influence of reverse fault dislocation on highway tunnel[J]. Highway,63(11):329–332 (in Chinese).
Kontogianni V A,Stiros S C. 2003. Earthquakes and seismic faulting:Effects on tunnels[J]. Turkish J Earth Sci,12(1):153–156.