2010年马乌莱MW8.8地震震后形变三维黏弹性数值模拟

张懿行 胡岩 SegunSteven Bodunde

张懿行,胡岩,Segun S B. 2021. 2010年马乌莱MW8.8地震震后形变三维黏弹性数值模拟. 地震学报,43(2):180−193 doi: 10.11939/jass.20200071
引用本文: 张懿行,胡岩,Segun S B. 2021. 2010年马乌莱MW8.8地震震后形变三维黏弹性数值模拟. 地震学报,43(2):180−193 doi: 10.11939/jass.20200071
Zhang Y X,Hu Y,Segun S B. 2021. 3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010. Acta Seismologica Sinica,43(2):180−193 doi: 10.11939/jass.20200071
Citation: Zhang Y X,Hu Y,Segun S B. 2021. 3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010. Acta Seismologica Sinica43(2):180−193 doi: 10.11939/jass.20200071

2010年马乌莱MW8.8地震震后形变三维黏弹性数值模拟

doi: 10.11939/jass.20200071
基金项目: 科技部重点研发项目(2018YFC504103)、中科院战略先导A(XDA20070302)和国家自然科学基金面上项目(41774109)共同资助
详细信息
    通讯作者:

    胡岩,e-mail:yanhu11@ustc.edu.cn

  • 中图分类号: P315.2

3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010

  • 摘要: 2010年智利马乌莱MW8.8地震发生在纳斯卡板块与南美板块的板块边界处,引起了显著的同震和震后效应。GPS台网数据显示记录到的同震海向位移最大约5 m,垂向沉降最大约50 cm。在经过对俯冲效应、季节变化等效应的校正后,震后6年的海向最大位移约68 cm,垂向抬升最大约20 cm。马乌莱地震显著的震后形变对该区域的地下三维黏弹性结构有良好的约束。本文建立了智利中南部俯冲带区域的三维有限元模型,黏弹性的地幔楔及海洋地幔均使用伯格斯体材料,并在断层面上设置2 km厚的软弱层以模拟震后余滑。在与GPS台站震后位移数据进行比较后,模拟结果表明,大洋地幔顶部存在约120 km厚,黏度为1×1019 Pa·s的软流圈。模拟震后余滑效应的软弱层黏度为5×1017 Pa·s,其等效震后余滑的最大值在震后前两年接近2 m,且随着时间的增长而快速衰减。

     

  • 图  1  南美俯冲带2010年马乌莱MW8.8地震构造背景

    Figure  1.  The tectonic background of the 2010 MW8.8 Maule earthquake in South American subduction zone

    图  2  拟合得到的震间速度场与震后位移场

    (a) 震间速度场;(b) 震后六年累积位移场

    Figure  2.  Fitted interseismic velocity field and postseismic displacement field

    (a) Interseismic velocity field;(b) Accumulated postseismic displacement field for 6 years

    图  3  有限元模型

    (a) 具有最优参数的有限元模型示意图;(b) 三维有限元网格图

    Figure  3.  Finite element model

    (a) Schematic diagram for FEM with the optimal model parameters;(b) 3D FEM meshes

    图  4  2010年马乌莱MW8.8地震的同震位移图

    Figure  4.  Coseismic displacement of the MW8.8 Maule earthquake in 2010

    图  5  震后两年震后余滑与各部分黏弹性松弛效应的独立模拟及其综合效应

    (a) 软弱层模拟的震后余滑效应;(b) 地幔楔应力松弛效应;(c) 大洋地幔软流圈应力松弛效应;(d) 深部大洋地幔应力松弛效应;(e) 图(a)−(d)的综合效应

    Figure  5.  Independent simulation of afterslip viscoelastic relaxation effect of each part and its combined effect in 2 years after earthquake

    (a) Afterslip effects simulated by weak shear zone;(b) Stress relaxation effects of mantle wedge;(c) Stress relaxation effects of oceanic asthenosphere;(d) Stress relaxation effects of deep oceanic mantle;(e) Combined effects of figs.(a)−(d)

    图  6  模型误差图 (每一个小方块代表一个测试模型)

    (a) 仅考虑水平分量误差图;(b) 仅考虑垂直分量误差图;(c) 水平和垂向三分量误差图

    Figure  6.  Misfits of model results (Each cube represents one test model)

    (a) Misfits only considered horizontal component;(b) Misfits only considered vertical component; (c) Misfits considered three-component data

    图  7  最优模型 0—2年(a)、2—4年(b)、 4—6年(c)震后位移图

    Figure  7.  Postseismic displacement for the optimal model of 0−2 years (a),2−4 years (b) and 4−6 years (c)

    图  8  基于软弱层模拟得到的震后余滑分布(闭合线圈为同震破裂等值线)

    (a) 0—2年;(b) 2—4年;(c) 4—6年

    Figure  8.  Afterslip distribution simulated by shearzone (Closed lines represent coseismic contour)

    (a) 0−2 years;(b) 2−4 years;(c) 4−6 years

  • 黄禄渊,张贝,瞿武林,张怀,石耀霖. 2017. 2010智利Maule特大地震的同震效应[J]. 地球物理学报,60(3):972–984. doi: 10.6038/cjg20170312
    Huang L Y,Zhang B,Qu W L,Zhang H,Shi Y L. 2017. The co-seismic effects of 2010 Maule earthquake[J]. Chinese Journal of Geophysics,60(3):972–984 (in Chinese).
    林鑫,郝金来,姚振兴. 2017. 智利MW8.3地震与MW8.8地震的震源过程及其引起的库仑应力特征[J]. 地球物理学报,60(7):2680–2692.
    Lin X,Hao J L,Yao Z X. 2017. Rupture process and Coulomb stress change of the MW8.3 earthquake and the MW8.8 earthquake,Chile[J]. Chinese Journal of Geophysics,60(7):2680–2692 (in Chinese).
    Aagaard B, Williams C, Knepley M, Williams C. 2017. Computational infrastructure for geodynamics: Software[CP/OL]. [2019-08-05]. https://geodynamics.org/cig/software/pylith.
    Bedford J,Moreno M,Baez J C,Lange D,Tilmann F,Rosenau M,Heidbach O,Oncken O,Bartsch M,Rietbrock A,Tassara A,Bevis M,Vigny C. 2013. A high-resolution,time-variable afterslip model for the 2010 Maule MW8.8,Chile megathrust earthquake[J]. Earth Planet Sci Lett,383:26–36. doi: 10.1016/j.jpgl.2013.09.020
    Bedford J,Moreno M,Li S Y,Oncken O,Baez J C,Bevis M,Heidbach O,Lange D. 2016. Separating rapid relocking,afterslip,and viscoelastic relaxation:An application of the postseismic straightening method to the Maule 2010 cGPS[J]. J Geophys Res:Solid Earth,121(10):7618–7638. doi: 10.1002/2016JB013093
    Blewitt G,Hammond W C,Kreemer Corné K. 2018. Harnessing the GPS data explosion for interdisciplinary science[J]. Eos,99:1–2.
    Chen L. 2017. Layering of subcontinental lithospheric mantle[J]. Science Bulletin,62(14):1030–1034. doi: 10.1016/j.scib.2017.06.003
    Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res:Solid Earth,117(B1):B01302.
    Hicks S P,Rietbrock A,Ryder I M,Lee C S,Miller M. 2014. Anatomy of a megathrust:The 2010 M8.8 Maule,Chile earthquake rupture zone imaged using seismic tomography[J]. Earth Planet Sci Lett,405:142–155. doi: 10.1016/j.jpgl.2014.08.028
    Hu Y,Wang K L,He J H,Klotz J,Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res:Solid Earth,109(B12):B12403. doi: 10.1029/2004JB003163
    Hu Y,Bürgmann R,Banerjee P,Feng L J,Hill E M,Ito T,Tabei T,Wang K L. 2016a. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake[J]. Nature,538(7625):368–372. doi: 10.1038/nature19787
    Hu Y,Bürgmann R,Uchida N,Banerjee P,Freymueller J T. 2016b. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake[J]. J Geophys Res:Solid Earth,121(1):385–411. doi: 10.1002/2015JB012508
    Igarashi T,Matsuzawa T,Hasegawa A. 2003. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone[J]. J Geophys Res:Solid Earth,108(B5):2249.
    Klein E,Fleitout L,Vigny C,Garaud J D. 2016. Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 MW8.8 Maule earthquake (Chile)[J]. Geophys J Int,205(3):1455–1472. doi: 10.1093/gji/ggw086
    Klotz J,Khazaradze G,Angermann D,Reigber C,Perdomo R,Cifuentes O. 2001. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes[J]. Earth Planet Sci Lett,193(3/4):437–446.
    Li S Y,Moreno M,Bedford J,Rosenau M,Heidbach O,Melnick D,Oncken O. 2017. Postseismic uplift of the Andes following the 2010 Maule earthquake:Implications for mantle rheology[J]. Geophys Res Lett,44(4):1768–1776.
    Li S Y,Bedford J,Moreno M,Barnhart W D,Rosenau M,Oncken O. 2018. Spatio-temporal variation of mantle viscosity and the presence of cratonic mantle inferred from 8 years of postseismic deformation following the 2010 Maule,Chile,earthquake[J]. Geochem,Geophys,Geosyst,19(9):3272–3285.
    Moreno M,Melnick D,Rosenau M,Baez J,Klotz J,Oncken O,Tassara A,Chen J,Bataille K,Bevis M,Socquet A,Bolte J,Vigny C,Brooks B,Ryder I,Grund V,Smalley B,Carrizo D,Bartsch M,Hase H. 2012. Toward understanding tectonic control on the MW8.8 2010 Maule Chile earthquake[J]. Earth Planet Sci Lett,321-322:152–165. doi: 10.1016/j.jpgl.2012.01.006
    Oncken O, Chong G, Franz G, Giese P, Götze H J, Ramos V A, Strecker M R, Wigger P. 2006. The Andes: Active Subduction Orogeny[M]. Berlin, Heidelberg: Springer Science & Business Media: 443–457.
    Ruegg J C,Rudloff A,Vigny C,Madariaga R,de Chabalier J B,Campos J,Kausel E,Barrientos S,Dimitrov D. 2009. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile[J]. Phys Earth Planet Inter,175(1/2):78–85.
    Sun T H,Wang K L,He J H. 2018. Crustal deformation following great subduction earthquakes controlled by earthquake size and mantle rheology[J]. J Geophys Res:Solid Earth,123(6):5323–5345. doi: 10.1029/2017JB015242
    Tong X P,Sandwell D,Luttrell K,Brooks B,Bevis M,Shimada M,Foster J,Smalley Jr R,Parra H,Soto J C B,Blanco M,Kendrick E,Genrich J,Caccamise II D J. 2010. The 2010 Maule,Chile earthquake:Downdip rupture limit revealed by space geodesy[J]. Geophys Res Lett,37(24):L24311.
    Uchida N,Matsuzawa T. 2013. Pre- and postseismic slow slip surrounding the 2011 Tohoku-Oki earthquake rupture[J]. Earth Planet Sci Lett,374:81–91. doi: 10.1016/j.jpgl.2013.05.021
    Utada H,Kiyoshi B. 2014. Estimating the electrical conductivity of the melt phase of a partially molten asthenosphere from seafloor magnetotelluric sounding data[J]. Phys Earth Planet Inter,227:41–47. doi: 10.1016/j.pepi.2013.12.004
    Wang K L,Hu Y,Bevis M,Kendrick E,Smalley Jr R,Vargas R B,Lauría E. 2007. Crustal motion in the zone of the 1960 Chile earthquake:Detangling earthquake-cycle deformation and forearc-sliver translation[J]. Geochem,Geophys,Geosyst,8(10):Q10010.
    Wang K L,Hu Y,He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature,484(7394):327–332. doi: 10.1038/nature11032
    Watts A B,Zhong S. 2000. Observations of flexure and the rheology of oceanic lithosphere[J]. Geophys J Int,142(3):855–875. doi: 10.1046/j.1365-246x.2000.00189.x
    Weiss J R,Qiu Q,Barbot S,Wright T J,Foster J H,Saunders A,Brooks B A,Bevis M,Kendrick E,Ericksen T L,Avery J,Smalley Jr R,Cimbaro S R,Lenzano L E,Barón J,Báez J C,Echalar A. 2019. Illuminating subduction zone rheological properties in the wake of a giant earthquake[J]. Sci Adv,5(12):eaax6720. doi: 10.1126/sciadv.aax6720
    Yue H,Lay T,Rivera L,An C,Vigny C,Tong X P,Soto J C B. 2014. Localized fault slip to the trench in the 2010 Maule,Chile MW8.8 earthquake from joint inversion of high-rate GPS,teleseismic body waves,InSAR,campaign GPS,and tsunami observations[J]. J Geophys Res:Solid Earth,119(10):7786–7804. doi: 10.1002/2014JB011340
  • 加载中
图(9)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  267
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-18
  • 修回日期:  2020-06-22
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回